Electronic Supplementary Information

N-Methylamide-Structured SB366791 Derivatives with High TRPV1 Antagonistic Activity: Toward PET Radiotracers to Visualize TRPV1

Tatsuya Kida^{*a*†}, Nobuaki Takahashi^{*b*†}, Masayuki X. Mori^{*b*†§}, Jiacheng H. Sun^{*b*}, Hideto Oota^{*b*}, Kosuke Nishino^{*a*}, Takashi Okauchi^{*c*}, Yuta Ochi^{*c*}, Daisuke Kano^{*d*}, Ukihide Tateishi^{*e*}*, Yasuyoshi Watanabe^{*f*}, Yilong Cui^{*c*}*, Yasuo Mori^{*b*}*, Hisashi Doi^{*a*}*

^a Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan

^b Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan

^c Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan ^d Pharmaceutical department, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba, 277-8577 Japan

^e Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University Graduate School of Medicine, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan

^f Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan [†]These authors contributed equally.

[§] Current address: Laboratory of Biomaterials and Chemistry, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan

* Corresponding authors

E-mail: ttisdrnm@tmd.ac.jp, cuiyl@riken.jp, mori@sbchem.kyoto-u.ac.jp, and hisashi.doi@riken.jp

List of Contents

Chapter 1: Compound characterization data		pp. 4–17
	Compound 2	pp. 4–5
	Compound 3	pp. 6–7
	Compound 4	pp. 8–9
	Compound 5	рр. 10–11
	Compound 6	рр. 12–13
	<i>N</i> -{3-(2-fluoroethoxy)phenyl}-4-chlorocinnamamide: precursor for	
	the preparation of 3	pp. 14–15
	<i>N</i> -{3-(3-fluoropropoxy)phenyl}-4-chlorocinnamamide: pro	ecursor for
	the preparation of 4	pp. 16–17

Chapter 2: Analytical data for radiolabeled tracers [¹¹C]**2** and [¹⁸F]**4** pp. 18–19

Chapter 3: Analytical data for calcium(II) influx assays using 1–4 pp. 20

Chapter 4: Whole-body PET images of three radiotracers [¹¹C]1, [¹¹C]2, and [¹⁸F]4 pp. 21

Chapter 1: Compound characterization data

¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) spectrum

¹H–¹H COSY (DMSO-*d*₆) spectrum

High-resolution mass spectrum

Characterization data for compound 3

¹H NMR (400 MHz, DMSO-*d*₆) spectrum

¹H–¹H COSY (DMSO-*d*₆) spectrum

High-resolution mass spectrum

Characterization data for compound 4

¹H NMR (400 MHz, DMSO-*d*₆) spectrum

¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) spectrum

¹H–¹H COSY (DMSO-*d*₆) spectrum

High-resolution mass spectrum

Characterization of compound 5

¹H NMR (400 MHz, DMSO-*d*₆) spectrum

This ¹H NMR spectrum is consistent with that of a previous report (see D. V. Veghel *et al.*, *Nucl. Med. Biol.*, 2013, **40**, 141–147).

 $^{13}C{^{1}H}$ NMR (100 MHz, DMSO-*d*₆) spectrum

¹H–¹H COSY (DMSO-*d*₆) spectrum

High-resolution mass spectrum

Characterization data for compound 6

¹H NMR (400 MHz, DMSO-*d*₆) spectrum

¹H–¹H COSY (DMSO-*d*₆) spectrum

High-resolution mass spectrum

Characterization of N-{3-(2-fluoroethoxy)phenyl}-4-chlorocinnamamide

¹H NMR (400 MHz, DMSO-*d*₆) spectrum

¹H–¹H COSY (DMSO-*d*₆) spectrum

High-resolution mass spectrum

Characterization of N-{3-(3-fluoropropoxy)phenyl}-4-chlorocinnamamide

¹H NMR (400 MHz, DMSO-*d*₆) spectrum

¹H–¹H COSY (DMSO-*d*₆) spectrum

High-resolution mass spectrum

Chapter 2: Analytical data for radiolabeled tracers [¹¹C]2 and [¹⁸F]4

Purity analysis of [¹¹C]**2**: (a) radio-HPLC analysis, and (b) UV-HPLC analysis; the peak at 1.5–4.0 min is largely attributed to the use of ascorbic acid as an additive.

(a) Radio-HPLC analysis

(b) UV-HPLC analysis

HPLC conditions: column: COSMOSIL, $5C_{18}$ -MS-II, 4.6×150 mm; mobile phase: acetonitrile/H₂O = 60:40; flow rate: 1.0 mL/min; column temperature: 25 °C; UV detection: 254 nm; retention time 7.0 min.

Purity analysis of [¹⁸F]**4**: (a) radio-HPLC analysis and (b) UV-HPLC analysis; the peak at 1.5–4.0 min is largely attributed to the use of ascorbic acid as an additive.

(a) Radio-HPLC analysis

HPLC conditions: column: COSMOSIL, 5C₁₈-MS-II, 4.6 \times 150 mm; mobile phase: acetonitrile/H₂O = 60/40; flow rate: 1.0 mL/min; column temperature: 25 °C; UV detection: 280 nm; retention time 8.6 min.

5.0

7.5

time (min)

2.5

0.0

Chapter 3: Analytical data for calcium(II) influx assays using 1-4

 Ca^{2+} influx assay using rat TRPV1-expressing HEK293 cells and a 1.0 μ M solution of capsaicin as an agonist; regarding the test compounds 1–4 (specified concentration), fura-2 was excited at 340 and 380 nm and the ratio of the emissions was measured.

Chapter 4: Whole-body PET images of three radiotracers [¹¹C]**1**, [¹¹C]**2**, and [¹⁸F]**4**

The PET radiotracers $[^{11}C]\mathbf{1}$, $[^{11}C]\mathbf{2}$, and $[^{18}F]\mathbf{4}$ were intravenously injected into the tail vein of rats, and the summated PET images (5–60 min after tracer injection) were reconstructed. A clear whole-body image of $[^{11}C]\mathbf{2}$ with a high S/N ratio has been presented in the text. For the experimental procedure, please refer to the Experimental section.