Electronic Supplementary Information

Fragment Optimization and Elaboration Strategies- The Discovery of Two Lead Series of PRMT5/MTA Inhibitors from Five Fragment Hits

Christopher R. Smith, ${ }^{*+}$ Svitlana Kulyk, $* \neq$ Misbha Ud Din Ahmad ${ }^{\dagger}$, Valentina Arkhipova ${ }^{\dagger}$,
James G. Christensen ${ }^{\ddagger}$, Robin J. Gunn ${ }^{\ddagger}$, Anthony Ivetac ${ }^{\ddagger}$, John M. Ketcham ${ }^{\ddagger}$, Jon Kuehler ${ }^{\ddagger}$, J.
David Lawson ${ }^{*}$, Nicole C. Thomas ${ }^{\ddagger}$, Xiaolun Wang ${ }^{\ddagger}$, and Matthew A. Marx ${ }^{\ddagger}$.

${ }^{\ddagger}$ Mirati Therapeutics, San Diego, California 92121, United States
${ }^{\dagger}$ ZoBio BV, J.H. Oortweg 19, 2333 CH Leiden, Netherlands

* Corresponding Authors smithc@mirati.com and kulyks@mirati.com

Table of Contents

General experimental and chemical procedures .. 1
PRMT5/MTA X-ray co-crystallography .. 20
References... 25

General experimental and chemical procedures

All chemicals were purchased from commercial suppliers and used as received unless otherwise indicated. Nuclear magnetic resonance (NMR) spectroscopy was performed on a Brüker Avance III 400 MHz spectrometer, where proton NMR (${ }^{1} \mathrm{H} \mathrm{NMR}$) spectra, carbon NMR (${ }^{13} \mathrm{C}$ NMR) spectra and fluorine (${ }^{19} \mathrm{~F}$ NMR) were acquired at $400,100 \mathrm{MHz}$ and 376.5 MHz respectively. All spectra were recorded in deuterated dimethyl sulfoxide (DMSO- d_{6}), deuterated methanol $\left(\mathrm{CD}_{3} \mathrm{OD}-d_{4}\right)$ or deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ obtained from Cambridge Isotope Laboratories Inc. Chemical shifts (δ) were measured in parts per million (ppm) and referenced against the internal reference peaks. Coupling constants (J), when given, are reported in hertz. Multiplicities are reported using the following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublets,
$\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet (range of multiplet is given), $\mathrm{br}=$ broad signal, $\mathrm{dt}=$ doublet of triplets. Final Compounds were purified by reverse phase high-performance liquid chromatography (prep-HPLC) by either of the following conditions: HCl condition - Phenomenex Luna C18 75 x 30 mm x $3 \mu \mathrm{~m}$; mobile phase: [water ($0.05 \% \mathrm{HCl}$)-ACN]; B\%: 10\%-40\%, 6.5 min. Basic condition - Waters Xbridge $150 \times 25 \mathrm{~mm} \times 5 \mu \mathrm{~m}$; mobile phase: [water (0.05% ammonia hydroxide v / v)-acetonitrile]; B\%: 3\%-40\%, 10 min . Ammonium bicarbonate condition - Waters Xbridge $150 \times 25 \mathrm{~mm} \times 5$; mobile phase: water (10 mM ammonium bicarbonate) acetonitrile; B: $2 \%-40 \%, 10 \mathrm{~min}$. The purity for test compounds was determined by highperformance liquid chromatography (HPLC) on a LC-20AB Shimadzu instrument. HPLC conditions were as follows: Kinetex C18 LC Column $4.6 \times 50 \mathrm{~mm}, 5 \mu \mathrm{~m}, 10 \%-80 \% \mathrm{ACN}$ $(0.0375 \% \mathrm{TFA})$ in water $(0.01875 \% \mathrm{TFA}), 4 \mathrm{~min}$ run, flow rate $1.5 \mathrm{~mL} / \mathrm{min}$, UV detection $(\lambda=$ 220, 215, 254 nm) or XBridge C18, $2.1 \times 50 \mathrm{~mm}, 5 \mu \mathrm{~m}, 10 \%-80 \% \mathrm{ACN}$ in water buffered with 0.025% ammonia, 4 min run, flow rate $0.8 \mathrm{~mL} / \mathrm{min}$, UV detection ($\lambda=220,215,254 \mathrm{~nm}$), or Kinetex EVO C18 $100 \times 4.6 \mathrm{~mm}, 2.6 \mu \mathrm{~m}, 0 \%-60 \%$ (or $10 \%-80 \%$) ACN (0.0375% TFA) in water (0.01875% TFA) 10 min run, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection $(\lambda=220,254 \mathrm{~nm}$) or Eclipse plus C18 $150 \times 4.6 \mathrm{~mm}, 3.5 \mu \mathrm{~m}, 10 \%-80 \%) \mathrm{ACN}(0.0375 \%$ TFA $)$ in water $(0.01875 \%$ TFA) 15 min run, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection $(\lambda=220,254 \mathrm{~nm})$. The mass spectra were obtained using liquid chromatography mass spectrometry (LCMS) on a LCMS-2020 Shimadzu instrument using electrospray ionization (ESI). LCMS conditions were as follows: Kinetex EVO C18 30 x $2.1 \mathrm{~mm}, 5 \mu \mathrm{~m}, 5 \%-95 \% \mathrm{ACN}$ (0.0375% TFA) in water ($0.01875 \% \mathrm{TFA}$), 1.5 min run, flow rate $1.5 \mathrm{~mL} / \mathrm{min}$, UV detection $(\lambda=220$, 254 nm), or Kinetex EVO C18 $2.1 \times 30 \mathrm{~mm}, 5 \mu \mathrm{~m}, 5 \%-$ $95 \% \mathrm{ACN}$ in water buffered with 0.025% ammonia, 1.5 min run, flow rate $1.5 \mathrm{~mL} / \mathrm{min}$, UV detection ($\lambda=220,254 \mathrm{~nm}$). High resolution mass measurements were carried out on an Agilent 1290 LC \& 6530Q-TOF series with ESI. All compounds are $>95 \%$ pure by HPLC.

Example 6: 6-methyl-1H-pyrrolo[3,2-b]pyridin-5-amine.

To a solution of 6-bromo- 1 H -pyrrolo[3,2-b]pyridin-5-amine ($150 \mathrm{mg}, 707 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) and methylboronic acid ($212 \mathrm{mg}, 3.54 \mathrm{mmol}, 5.00$ eq.) in 1,4-dioxane (2.5 mL) and water (0.5 mL) was added potassium carbonate ($293 \mathrm{mg}, 2.12 \mathrm{mmol}, 3.00 \mathrm{eq}$.) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}-\mathrm{DCM}(58 \mathrm{mg}$, $70.7 \mu \mathrm{~mol}, 0.10 \mathrm{eq}$.). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 hours under nitrogen atmosphere before being diluted with water $(50 \mathrm{~mL})$ and filtered. The filtrate was concentrated. The residue was purified by prep-HPLC (basic condition) and lyophilized to afford 6 (21.9 mg , $148 \mu \mathrm{~mol}, 21 \%$ yield) as a yellow solid. LCMS $[\mathrm{M}+1]^{+}: 148.3 .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta=10.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dt}, J=0.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}$, 2 H), $2.13(\mathrm{~s}, 3 \mathrm{H})$; HRMS (ESI, +ve ion) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{3}$ 147.0796; found 147.0787; HPLC Rt $1.433 \mathrm{~min}, 99.7 \%$.

Example 7: 6-cyclopropyl-1H-pyrrolo[3,2-b]pyridin-5-amine.

To a solution of 6-bromo- 1 H -pyrrolo $[3,2-b]$ pyridin- 5 -amine ($150 \mathrm{mg}, 707 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) and cyclopropylboronic acid ($304 \mathrm{mg}, 3.54 \mathrm{mmol}, 5.00$ eq.) in 1,4-dioxane (2.5 mL) and water (0.5 mL) was added potassium carbonate ($293 \mathrm{mg}, 2.12 \mathrm{mmol}, 3.00 \mathrm{eq}$.) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}-\mathrm{DCM}(58$ $\mathrm{mg}, 70.7 \mu \mathrm{~mol}, 0.10 \mathrm{eq}$.). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 hours under nitrogen atmosphere before being diluted with water $(50 \mathrm{~mL})$ and filtered. The filtrate was concentrated. The residue was purified by prep-HPLC (basic condition) and lyophilized to afford $7(8.3 \mathrm{mg}$, $47.4 \mu \mathrm{~mol}, 7 \%$ yield $)$ as a white solid. LCMS $[\mathrm{M}+1]^{+}: 174.1 .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ $=10.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{ddd}, J=0.8,2.0,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.20(\mathrm{~s}, 2 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 1 \mathrm{H}), 0.92-0.85(\mathrm{~m}, 2 \mathrm{H}), 0.54-0.47(\mathrm{~m}, 2 \mathrm{H})$; HRMS (ESI, +ve ion) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3}$ 173.0953; found 173.0941; HPLC Rt $1.319 \mathrm{~min}, 99.0 \%$.

Example 8: 6-(trifluoromethyl) -1H-pyrrolo[3,2-b]pyridin-5-amine.

Step 1: To a mixture of 2-methoxy-6-methyl-5-nitro-3-(trifluoromethyl)pyridine (prepared following the method from WO2018215316) ($500 \mathrm{mg}, 2.12 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in acetonitrile (10 mL) was added chlorotrimethylsilane ($1.15 \mathrm{~g}, 10.6 \mathrm{mmol}, 1.34 \mathrm{~mL}, 5.00 \mathrm{eq}$.$) and sodium iodide$ ($1.59 \mathrm{~g}, 10.6 \mathrm{mmol}, 5.00 \mathrm{eq}$.). The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 2 hours. The mixture was concentrated and the residue was purified by reversed-phase HPLC (formic acid condition) to afford 6-methyl-5-nitro-3-(trifluoromethyl)pyridin-2-ol ($290 \mathrm{mg}, 1.26 \mathrm{mmol}, 60 \%$ yield) as a black solid. LCMS $[\mathrm{M}+1]^{+}: 223.0$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=13.23(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}$, $1 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H})$.

Step 2: To a mixture of 6-methyl-5-nitro-3-(trifluoromethyl)pyridin-2-ol ($250 \mathrm{mg}, 1.13 \mathrm{mmol}$, 1.00 eq.) in acetonitrile (6 mL) was added $\mathrm{DBU}(343 \mathrm{mg}, 2.25 \mathrm{mmol}, 339 \mu \mathrm{~L}, 2.00$ eq.), (4methoxyphenyl)methanamine ($463 \mathrm{mg}, 3.38 \mathrm{mmol}, 437 \mu \mathrm{~L}, 3.00 \mathrm{eq}$.) and BOP ($647 \mathrm{mg}, 1.46$ $\mathrm{mmol}, 1.30 \mathrm{eq}$.). The mixture was stirred at $30^{\circ} \mathrm{C}$ for 2 hours before being concentrated and purified by flash silica gel chromatography (Ethyl acetate / Petroleum ether 0-20\%) to afford N -[(4-methoxyphenyl)methyl]-6-methyl-5-nitro-3-(trifluoromethyl)pyridin-2-amine ($280 \mathrm{mg}, 818$ $\mu \mathrm{mol}, 73 \%$ yield) as a yellow oil. LCMS $[\mathrm{M}+1]^{+}: 341.9$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.48$ $(\mathrm{s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H}), 6.96-6.84(\mathrm{~m}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $2.85(\mathrm{~s}, 3 \mathrm{H})$.

Step 3: To a solution of $N-[(4-m e t h o x y p h e n y l) m e t h y l]-6-m e t h y l-5-n i t r o-3-~$ (trifluoromethyl)pyridin-2-amine ($250 \mathrm{mg}, 733 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) in DMF (4.00 mL) was added N, N-dimethyl formamide dimethyl acetal ($436 \mathrm{mg}, 3.66 \mathrm{mmol}, 486 \mu \mathrm{~L}, 5.00 \mathrm{eq}$.). The mixture was stirred at $90^{\circ} \mathrm{C}$ for 3 hours. The reaction mixture was poured into brine (50 mL), extracted with ethyl acetate $(10 \mathrm{~mL} \times 3)$. The combined organic layers were washed with water (30 mL), dried over anhydrous sodium sulfate, filtered and concentrated to afford 6-[(E)-2-(dimethylamino)vinyl]-N-[(4-methoxyphenyl)methyl]-5-nitro-3-(trifluoromethyl)pyridin-2-
amine ($290 \mathrm{mg}, 702 \mu \mathrm{~mol}, 96 \%$ yield) as a brown solid. LCMS $[\mathrm{M}+1]{ }^{+}: 397.2 .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.45(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-6.82(\mathrm{~m}$, $2 \mathrm{H}), 6.47(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 6 \mathrm{H}$).

Step 4: A suspension of $\mathrm{Fe}(42.3 \mathrm{mg}, 757 \mu \mathrm{~mol}, 6.00$ eq. $)$ in acetic acid $(1.0 \mathrm{~mL})$ was stirred at $25{ }^{\circ} \mathrm{C}$ for 0.5 hour and then 6-[(E)-2-(dimethylamino)vinyl]- N-[(4-methoxyphenyl)methyl]-5-nitro-3-(trifluoromethyl)pyridin-2-amine ($50.0 \mathrm{mg}, 126 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) was added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 hour, filtered and concentrated to afford $N-[(4-$ methoxyphenyl)methyl]-6-(trifluoromethyl)-1 H -pyrrolo[3,2-b]pyridin-5-amine (30 mg, crude, 67% pure by LCMS) as a brown solid. LCMS $[\mathrm{M}+1]^{+}: 322.1$.

Step 5: To a mixture of $N-[(4-m e t h o x y p h e n y l) m e t h y l]-6-(t r i f l u o r o m e t h y l)-1 H-p y r r o l o[3,2-~$ b]pyridin-5-amine (30.0 mg , crude, 67% pure by LCMS) in dichloromethane (3.0 mL) was added trifluoroacetic acid (1.0 mL). The mixture was stirred at $25^{\circ} \mathrm{C}$ for 16.5 hours. The mixture was basified to pH 7 with ammonium hydroxide and concentrated. The crude material was purified by prep-HPLC (basic condition) to afford $\mathbf{8}(2.5 \mathrm{mg}, 12.0 \mu \mathrm{~mol}, 10 \%$ yield over 2 steps $)$ as an off-white solid. LCMS $[\mathrm{M}+1]^{+}: 202.1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}-d_{4}$) $\delta=7.89(\mathrm{~s}, 1 \mathrm{H})$, $7.54(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=0.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($376.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}-d_{4}$) $\delta-$ 64.4 ($\mathrm{s}, 1 \mathrm{~F}$); HPLC Rt $1.323 \mathrm{~min}, 95.1 \%$.

Example 9: N-[(5-amino-6-bromo-1H-pyrrolo[3,2-b]pyridin-2-yl)methyl]pyrimidine-4carboxamide.

Step 1: To a solution of 3-bromo-2-chloro-6-methyl-5-nitro-pyridine (19.0 g, $75.5 \mathrm{mmol}, 1.00$ eq.) and 1-(4-methoxyphenyl)- N -[(4-methoxyphenyl)methyl]methanamine ($23.3 \mathrm{~g}, 90.6 \mathrm{mmol}$, 1.20 eq.) in THF (190 mL) was added sodium carbonate $(9.61 \mathrm{~g}, 90.6 \mathrm{mmol}, 1.20 \mathrm{eq})$. The mixture was stirred at $75^{\circ} \mathrm{C}$ for 16 h . The mixture was concentrated, diluted with ethyl acetate $(500 \mathrm{~mL})$, washed with water $(200 \mathrm{~mL})$, dried over sodium sulfate, filtered, and concentrated. The residue was purified by silica gel chromatography (Ethyl acetate / Petroleum ether 0-50 \%) to afford 3-bromo- N, N-bis[(4-methoxyphenyl)methyl]-6-methyl-5-nitro-pyridin-2-amine (33.0 g , $68.4 \mathrm{mmol}, 91 \%$ yield) as a yellow solid. LCMS $[\mathrm{M}+1]^{+}: 472.0 .{ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $8.53(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.94-6.80(\mathrm{~m}, 4 \mathrm{H}), 4.75(\mathrm{~s}, 4 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 2.76(\mathrm{~s}$, $3 \mathrm{H})$.

Step 2: To a mixture of 3-bromo- N, N-bis[(4-methoxyphenyl)methyl]-6-methyl-5-nitro-pyridin-2-amine ($10.0 \mathrm{~g}, 21.1 \mathrm{mmol}, 1.00$ eq.) and diethyl oxalate ($9.20 \mathrm{~g}, 63.5 \mathrm{mmol}, 8.60 \mathrm{~mL}, 3.00$ eq.) was added DABCO ($3.87 \mathrm{~g}, 25.4 \mathrm{mmol}, 3.83 \mathrm{~mL}, 1.20 \mathrm{eq}$.$) . The mixture was stirred at 30{ }^{\circ} \mathrm{C}$ for 16 h . The mixture was diluted with ethyl acetate $(500 \mathrm{~mL})$. Acetic acid $(4.0 \mathrm{~mL})$ was added. The resulting solution was washed with water (300 mL), dried over sodium sulfate, filtered, and concentrated. The residue was purified by silica gel chromatography (Ethyl acetate / Petroleum ether 0-50 \%) to afford ethyl (Z)-3-[6-[bis[(4-methoxyphenyl)methyl]amino]-5-bromo-3-nitro-2-pyridyl]-2-hydroxy-prop-2-enoate ($7.20 \mathrm{~g}, 10.6 \mathrm{mmol}, 51 \%$ yield, 85% purity by LCMS) as a yellow solid. LCMS $[\mathrm{M}+1]^{+}: 572.2 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.70-8.63(\mathrm{~m}, 1 \mathrm{H}), 7.53$ $(\mathrm{s}, 1 \mathrm{H}), 7.07-6.98(\mathrm{~m}, 4 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 4 \mathrm{H}), 4.64-4.54(\mathrm{~m}, 4 \mathrm{H}), 4.38(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 6 \mathrm{H}), 1.43-1.30(\mathrm{~m}, 3 \mathrm{H})$.

Step 3: To a solution of ethyl (Z)-3-[6-[bis[(4-methoxyphenyl)methyl]amino]-5-bromo-3-nitro-2-pyridyl]-2-hydroxy-prop-2-enoate ($5.10 \mathrm{~g}, 8.91 \mathrm{mmol}, 1.00$ eq.) in THF (15 mL), ethanol (90 mL) and water (10 mL) was added ammonium chloride ($571 \mathrm{mg}, 10.6 \mathrm{mmol}, 1.20 \mathrm{eq}$) followed by iron powder ($1.99 \mathrm{~g}, 35.6 \mathrm{mmol}, 4.00 \mathrm{eq}$.) at $25^{\circ} \mathrm{C}$. The mixture was then stirred at $60^{\circ} \mathrm{C}$ for 6 hours. After such time the mixture was diluted with dichloromethane $(600 \mathrm{~mL})$ and water $(600$ mL), stirred for 10 min , filtered and the organic layer was separated, dried over sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (Ethyl acetate / Petroleum ether 0-80 \%) to afford ethyl 5-[bis [(4-methoxyphenyl) methyl] amino]-6-bromo-1 H pyrrolo [3, 2-b] pyridine-2-carboxylate ($2.10 \mathrm{~g}, 3.88 \mathrm{mmol}, 44 \%$ yield) as a yellow solid. LCMS
$[\mathrm{M}+1]^{+}: 526.1 .^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.92($ brs, 1 H$), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 4H), $7.20(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.78(\mathrm{~m}, 4 \mathrm{H}), 4.44(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 4 \mathrm{H}), 3.78(\mathrm{~s}$, $6 \mathrm{H}), 1.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 4: To a solution of ethyl 5-[bis[(4-methoxyphenyl)methyl]amino]-6-bromo-1 H-pyrrolo[3,2-b]pyridine-2-carboxylate ($900 \mathrm{mg}, 1.72 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in THF (20 mL) was added lithium aluminum hydride ($195 \mathrm{mg}, 5.15 \mathrm{mmol}, 3.00 \mathrm{eq}$.) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 0.5 hour. The mixture was diluted with tetrahydrofuran (100 mL). Sodium sulfate decahydrate $(5.0 \mathrm{~g})$ was added. The resulting solution was stirred for 0.5 hour. The resulting mixture was filtered and the filtrate concentrated to afford [5-[bis[(4-methoxyphenyl)methyl]amino]-6-bromo-1H-pyrrolo[3,2-b]pyridin-2-yl]methanol (827 mg , crude, 76% purity by LCMS) as a brown solid. LCMS $[\mathrm{M}+1]^{+}$: $484.2 .{ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.66-7.58$ (m, 1H), 7.22 (br d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~s}$, 4H), 3.66 ($\mathrm{s}, 6 \mathrm{H}$).

Step 5: To a solution of [5-[bis[(4-methoxyphenyl)methyl]amino]-6-bromo-1H-pyrrolo[3,2-b]pyridin-2-yl]methanol (827 mg , crude, 76% purity by LCMS) in dichloromethane (20 mL) was added thionyl chloride ($1.02 \mathrm{~g}, 8.57 \mathrm{mmol}, 621 \mu \mathrm{~L}$) and DMF ($125 \mathrm{mg}, 1.71 \mathrm{mmol}, 131 \mu \mathrm{~L}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 0.5 hour. The mixture was concentrated to afford 6-bromo-2-(chloromethyl)-N-[(4-methoxyphenyl)methyl]-1H-pyrrolo [3,2-b] pyridin-5-amine (652 mg , crude) as a black solid. Which was used direclty in the next step.

Step 6: Ammonia gas was passed through ethanol $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ for 10 min .6 -bromo-2-(chloromethyl)- $\mathrm{N}-[(4-m e t h o x y p h e n y l) m e t h y l]-1 \mathrm{H}$-pyrrolo[3,2-b]pyridin-5-amine (652 mg , crude) in methanol (15 mL) was added to the ammonia solution. The mixture was stirred at 25 ${ }^{\circ} \mathrm{C}$ for 16 hours. The mixture was concentrated, and the residue was purified by silica gel chromatography (methanol / dichloromethane $0-50 \%, 5 \%$ ammonium hydroxide) to afford 2-(aminomethyl)-6-bromo- N-[(4-methoxyphenyl) methyl]-1H-pyrrolo [3, 2-b] pyridin-5-amine, ($75 \mathrm{mg}, 159 \mu \mathrm{~mol}, 9 \%$ yield over 3 steps) as a brown solid. LCMS $[\mathrm{M}+1]^{+}: 363.1$.

Step 7: To a solution of 2-(aminomethyl)-6-bromo- N-[(4-methoxyphenyl) methyl]-1 H -pyrrolo [3, 2-b] pyridin-5-amine ($70 \mathrm{mg}, 193 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) and pyrimidine-4-carboxylic acid (36 mg , $290 \mu \mathrm{~mol}, 1.50 \mathrm{eq}$.) in dichloromethane (4.0 mL) was added HATU ($110 \mathrm{mg}, 290 \mu \mathrm{~mol}, 1.50$
eq.) and diisopropylethylamine ($581 \mu \mathrm{~mol}, 101 \mu \mathrm{~L}, 3.00 \mathrm{eq}$.) at $25^{\circ} \mathrm{C}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . The mixture was concentrated and the residue purified by silica gel chromatography (Petroleum ether / Ethyl acetate 0-100 \%) to afford N-[[6-bromo-5-[(4-methoxyphenyl)methylamino]-1H-pyrrolo[3,2-b]pyridin-2-yl]methyl]pyrimidine-4-carboxamide ($40 \mathrm{mg}, 77.0 \mu \mathrm{~mol}, 40 \%$ yield, 90% purity by LCMS) as brown solid. LCMS $[\mathrm{M}+1]^{+}: 467.1$. To a solution of N-[[6-bromo-5-[(4-methoxyphenyl)methylamino]-1H-pyrrolo[3,2-b]pyridin-2-yl]methyl]pyrimidine-4-carboxamide ($61.4 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) in dichloromethane (2.5 mL) was added trifluoroacetic acid $(0.5 \mathrm{~mL})$ at $10^{\circ} \mathrm{C}$. The mixture was stirred at $30^{\circ} \mathrm{C}$ for 6 hrs . The mixture was basified to pH 8 by addition of saturated sodium bicarbonate, extracted with dichloromethane (100 mL), dried over sodium sulfate, filtered, and concentrated. The residue was purified by silica gel chromatography (dichloromethane/ methanol 0-10\%) to afford 9 (8.9 $\mathrm{mg}, 24 \mu \mathrm{~mol}, 12 \%$ yield over 3 steps) as an off-white solid. LCMS $[\mathrm{M}+1]^{+}: 346.9 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}-d_{4}\right) \delta=9.30(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.05(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.12$ (dd, J = 1.2, 5.2 Hz, 1H), $6.43(\mathrm{~s}, 1 \mathrm{H}), 4.81-4.77(\mathrm{~m}, 2 \mathrm{H}) ;$ HPLC Rt $1.376 \mathrm{~min}, 95.7 \%$.

Example 13: 2-amino-1-methyl-1 H -benzo $[d]$ imidazole-7-carbonitrile hydrochloride.

Step 1: To a solution of 2-chloro-3-nitro-benzonitrile ($250 \mathrm{mg}, 1.37 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in ethanol $(2.5 \mathrm{~mL})$ was added methylamine in ethanol ($42.5 \mathrm{mg}, 1.37 \mathrm{mmol}, 2.5 \mathrm{M}, 10.0 \mathrm{eq}$.). The reaction mixture was stirred at $15^{\circ} \mathrm{C}$ for 12 hours then concentrated. The residue was diluted with water $(50 \mathrm{~mL})$ and extracted with ethyl acetate ($3 \times 60 \mathrm{~mL}$). The combined organic extracts were dried over sodium sulfate, filtered, and concentrated to produce 2-(methylamino)-3-nitro-benzonitrile ($240 \mathrm{mg}, 1.35 \mathrm{mmol}, 99 \%$ yield) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.51(\mathrm{~s}, 1 \mathrm{H})$, $8.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $3 \mathrm{H})$.

Step 2: To a solution of 2-(methylamino)-3-nitro-benzonitrile ($240 \mathrm{mg}, 1.35 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in water (3.0 mL) was added iron powder ($378 \mathrm{mg}, 6.77 \mathrm{mmol}, 5.00 \mathrm{eq}$.) and hydrochloric acid (6.00 M, $903 \mu \mathrm{~L}, 4.00$ eq.). The reaction mixture was stirred at $15^{\circ} \mathrm{C}$ for 12 hours and after such
time the mixture was concentrated. The residue was diluted with water (50 mL) and extracted with ethyl acetate ($2 \times 100 \mathrm{~mL}$). The combined organic extracts were dried over sodium sulfate, filtered and concentrated to give 3-amino-2-(methylamino)benzonitrile ($140 \mathrm{mg}, 0.95 \mathrm{mmol}$, 70% yield $)$ as a black solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.99(\mathrm{dd}, J=1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ - $6.85(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.77(\mathrm{~m}, 1 \mathrm{H}), 4.06-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H})$.

Step 3: To a solution of 3-amino-2-(methylamino)benzonitrile ($140 \mathrm{mg}, 0.95 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) in$ ethanol (3.0 mL) was added cyanogen bromide ($202 \mathrm{mg}, 1.90 \mathrm{mmol}, 2.00 \mathrm{eq}$.). The reaction mixture was stirred at $15^{\circ} \mathrm{C}$ for 2 hours. The mixture was then concentrated, and the residue diluted with water $(50 \mathrm{~mL})$ and extracted with ethyl acetate $(100 \times 2 \mathrm{~mL})$. The combined organic extracts were dried over sodium sulfate, filtered, and concentrated. The residue was purified by prep-HPLC (HCl condition) to afford $13(30 \mathrm{mg}, 171 \mu \mathrm{~mol}, 18 \%$ yield) as a white solid. LCMS $[\mathrm{M}+1]^{+}: 173.0 .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta=13.26(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~s}, 2 \mathrm{H}), 7.78-7.60(\mathrm{~m}$, $2 \mathrm{H}), 7.39(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$; HPLC Rt $1.283 \mathrm{~min}, 99.4 \%$.

Compound 19: 5-bromo-2-(2,5-dimethyl-1H-pyrrol-1-yl)-1-methyl-1 H-benzo[d]imidazole-7carbonitrile.

Step 1: To a solution of 5-bromo-2-(methylamino)benzonitrile ($15.0 \mathrm{~g}, 71.1 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in acetonitrile (300 mL) was added nitronium tetrafluoroborate ($8.78 \mathrm{~mL}, 85.3 \mathrm{mmol}, 1.20 \mathrm{eq}$.) at 0 ${ }^{\circ} \mathrm{C}$. The reaction was stirred at $20^{\circ} \mathrm{C}$ for 14 hours. The reaction mixture was diluted with water $(100 \mathrm{~mL})$ and stirred for 5 min . The aqueous phase was extracted with ethyl acetate $(150 \mathrm{~mL} \times$ 3). The combined organic phase was dried with anhydrous sodium sulfate, filtered, and concentrated in vacuum to give a residue. The residue was purified by column chromatography (SiO_{2}, ethyl acetate in petroleum ether/ 1-33\%) to produce 5-bromo-2-(methylamino)-3-nitrobenzonitrile ($6.00 \mathrm{~g}, 23.4 \mathrm{mmol}, 33 \%$ yield) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $=8.90-8.88(\mathrm{~m}, 1 \mathrm{H}), 8.87-8.85(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$.

Step 2: To a solution of 5-bromo-2-(methylamino)-3-nitrobenzonitrile ($5.00 \mathrm{~g}, 19.5 \mathrm{mmol}, 1.00$ eq.) in ethyl acetate (50 mL) and water $(1.5 \mathrm{~mL})$ was added acetic acid $(15 \mathrm{~mL})$ and iron powder
($10.9 \mathrm{~g}, 195 \mathrm{mmol}, 10.0 \mathrm{eq}$.). The reaction was stirred at $60^{\circ} \mathrm{C}$ for 1 hour. The reaction mixture was diluted with water $(100 \mathrm{~mL})$ and stirred for 5 min . The aqueous phase was extracted with ethyl acetate ($200 \mathrm{~mL} \times 3$). The combined organic phase was dried over anhydrous sodium sulfate, filtered and concentrated in vacuum to afford 3-amino-5-bromo-2(methylamino)benzonitrile ($4.10 \mathrm{~g}, 18.1 \mathrm{mmol}, 93 \%$ yield) as a black brown gum. LCMS [M+1] ${ }^{+}: 227.9 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=6.84(\mathrm{~m}, 2 \mathrm{H}), 5.31(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.48(\mathrm{~m}, 1 \mathrm{H}), 3.06$ (br d, $J=4.8 \mathrm{~Hz}, 3 \mathrm{H}$).

Step 3: To a solution of 3-amino-5-bromo-2-(methylamino)benzonitrile ($4.10 \mathrm{~g}, 18.1 \mathrm{mmol}, 1.00$ eq.) in ethyl alcohol (45 mL) was added cyanogen bromide ($3.84 \mathrm{~g}, 36.3 \mathrm{mmol}, 2.67 \mathrm{~mL}, 2.00$ $e q$.). The reaction was stirred at $20^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture was then diluted with water $(50 \mathrm{~mL})$ and stirred for 5 min . The aqueous phase was extracted with ethyl acetate $(40 \mathrm{~mL}$ $\times 3$). The combined organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuum to give a residue. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, ethyl acetate in petroleum ether $30-50 \%$, then methanol in ethyl acetate 10%) to give 2-amino-6-bromo-3-methyl-benzimidazole-4-carbonitrile ($1.80 \mathrm{~g}, 6.77 \mathrm{mmol}, 37 \%$ yield) as a dark brown solid. LCMS $[\mathrm{M}+1]^{+}: 252.8 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=7.54(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$.

Step 4: To a solution of 2-amino-6-bromo-3-methyl-benzimidazole-4-carbonitrile ($300 \mathrm{mg}, 1.19$ mmol, 1.00 eq .) in toluene (18 mL) and N, N-dimethylformamide (6 mL) was added 4methylbenzenesulfonic acid hydrate ($13.6 \mathrm{mg}, 71.7 \mu \mathrm{~mol}, 0.06$ eq.) and hexane-2,5-dione (682 $\mathrm{mg}, 5.97 \mathrm{mmol}, 701 \mu \mathrm{~L}, 5.00 \mathrm{eq}$.) at $10^{\circ} \mathrm{C}$. The mixture was stirred at $140^{\circ} \mathrm{C}$ for 16 hours fitted with a Dean-Stark trap. The mixture was poured into water $(30 \mathrm{~mL})$ and extracted with ethyl acetate $(15 \mathrm{~mL} \times 3)$. The combined organic layers were washed with water $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuum. The residue was purified by silica gel chromatography (ethyl acetate in petroleum ether 20\%) to afford 19 ($150 \mathrm{mg}, 454 \mu \mathrm{~mol}, 38 \%$ yield) as a white solid. LCMS [M+1] ${ }^{+}: 329.0 / 331.0 .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.35(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, 1.98 ($\mathrm{s}, 6 \mathrm{H}$).

Compound 21: 2-(2,5-dimethylpyrrol-1-yl)-3-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzimidazole-4-carbonitrile.

To a solution of 19 ($600 \mathrm{mg}, 1.82 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane ($1.39 \mathrm{~g}, 5.47 \mathrm{mmol}, 3.00$ eq.) in 1,4dioxane (9 mL) was added potassium acetate ($537 \mathrm{mg}, 5.47 \mathrm{mmol}, 3.00 \mathrm{eq}$.), followed by [1,1'bis(diphenylphosphino)ferrocene]dichloropalladium(II) ($200 \mathrm{mg}, 273 \mu \mathrm{~mol}, 0.15 \mathrm{eq}$.) under a nitrogen atmosphere. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 hours. The mixture was poured into water $(20 \mathrm{ml})$ and extracted with ethyl acetate $(20 \mathrm{~mL} \times 3)$. The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuum. The residue was purified by silica gel chromatography (ethyl acetate in petroleum ether 25\%) to afford 21 (710 mg , crude) as a white solid that was used in the next steps without further purification. LCMS $[\mathrm{M}+1]^{+}: 377.2 / 295.1 .^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=8.40(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 6 \mathrm{H}), 1.31(\mathrm{~s}, 12 \mathrm{H})$.

Compounds 28-31

Step 1: To a solution of 2,5-dibromopyridin-3-amine ($25.0 \mathrm{~g}, 99.2 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in pyridine $(250 \mathrm{~mL})$ was added 2,2-dimethylpropanoyl chloride ($18.0 \mathrm{~g}, 149 \mathrm{mmol}, 18.3 \mathrm{~mL}, 1.50 \mathrm{eq}$.$) at 0$
${ }^{\circ} \mathrm{C}$. The mixture was stirred at $20^{\circ} \mathrm{C}$ for 0.5 hr . The reaction mixture was diluted with water (200 $\mathrm{mL})$ and extracted with ethyl acetate $(200 \mathrm{~mL} \times 3)$. The combined organic phases were washed with brine (100 mL), dried over sodium sulfate, filtered, and concentrated to give a residue. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, Ethyl acetate / Petroleum ether 2-5\%) to give N-(2,5-dibromo-3-pyridyl)-2,2-dimethyl-propanamide ($33.0 \mathrm{~g}, 98.2 \mathrm{mmol}, 99 \%$ yield) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.95(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H})$.

Step 2: A mixture of N-(2,5-dibromo-3-pyridyl)-2,2-dimethyl-propanamide ($33.0 \mathrm{~g}, 98.2 \mathrm{mmol}$, 1.00 eq.), tri-butyl(1-ethoxyvinyl)stannane ($28.4 \mathrm{~g}, 78.6 \mathrm{mmol}, 26.5 \mathrm{~mL}, 0.80 \mathrm{eq}$.) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $\left(11.4 \mathrm{~g}, 9.82 \mathrm{mmol}, 0.10 \mathrm{eq}\right.$.) in toluene (1.32 L) was degassed and stirred at $80^{\circ} \mathrm{C}$ for 12 hours under nitrogen atmosphere. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, Ethyl acetate / Petroleum ether 2-5\%) to give N-[5-bromo-2-(1-ethoxyvinyl)-3-pyridyl]-2,2-dimethylpropanamide ($16.0 \mathrm{~g}, 47.6 \mathrm{mmol}, 49 \%$ yield $)$ as a white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 9.19 (br s, 1H), 9.03-8.99 (m, 1H), $8.34-8.27(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=2.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-$ $4.55(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.00(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.32-1.27(\mathrm{~m}, 9 \mathrm{H})$. A mixture of $N-[5-$ bromo-2-(1-ethoxyvinyl)-3-pyridyl]-2,2-dimethyl-propanamide ($9.50 \mathrm{~g}, 29.0 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in hydrochloric acid/dioxane ($4 \mathrm{M}, 38.0 \mathrm{~mL}, 5.24 \mathrm{eq}$.) was stirred at $20^{\circ} \mathrm{C}$ for 10 minutes. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was diluted with water $(50 \mathrm{~mL})$ and extracted with ethyl acetate $(50 \mathrm{~mL} \times 3)$. The combined organic phases were washed with saturated sodium bicarbonate aqueous solution ($50 \mathrm{~mL} \times 2$), brine (50 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, Ethyl acetate / Petroleum ether 2-5\%) to give N-(2-acetyl-5-bromo-3-pyridyl)-2,2-dimethyl-propanamide ($6.90 \mathrm{~g}, 17.4$ $\mathrm{mmol}, 60 \%$ yield) as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=11.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.44(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H})$.

Step 3: To a solution of acetonitrile ($1.84 \mathrm{~g}, 44.9 \mathrm{mmol}, 2.36 \mathrm{~mL}, 2.10 \mathrm{eq}$.) in THF (45 mL) was added lithium diisopropylamide ($2 \mathrm{M}, 22.5 \mathrm{~mL}, 2.10 \mathrm{eq}$.) in a dropwise fashion at $-78^{\circ} \mathrm{C}$. After stirring for 0.5 hour, a solution of N -(2-acetyl-5-bromo-3-pyridyl)-2,2-dimethyl-propanamide $(6.40 \mathrm{~g}, 21.4 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in THF $(20 \mathrm{~mL})$ was added to the reaction mixture. The reaction
mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes. The reaction mixture was quenched with water (50 $\mathrm{mL})$ and extracted with dichloromethane $(50 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine (50 mL), dried over sodium sulfate, filtered, and concentrated to give N-[5-bromo-2-(2-cyano-1-hydroxy-1-methyl-ethyl)-3-pyridyl]-2,2-dimethyl-propanamide (8.10 g , crude) as a brown oil, which was used in the next step directly without further purification. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=10.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.31-3.21(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.06(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$, 1.30 (s, 9H).

Step 4: A solution of N-[5-bromo-2-(2-cyano-1-hydroxy-1-methyl-ethyl)-3-pyridyl]-2,2-dimethyl-propanamide (0.95 g , crude) in hydrochloric acid ($3 \mathrm{M}, 3.80 \mathrm{~mL}$) was heated at $160^{\circ} \mathrm{C}$ for 5 minutes in a microwave. The resulting mixture was basified to pH 9 with saturated sodium bicarbonate $(10 \mathrm{~mL})$. A precipitate formed and the precipitate was filtered and washed with water to give 7-bromo-4-methyl-1 H -1,5-naphthyridin-2-one ($5.00 \mathrm{~g}, 20.9 \mathrm{mmol}$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta=11.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 5: A mixture of 7-bromo-4-methyl-1H-1,5-naphthyridin-2-one ($2.50 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.00$ eq.) and phosphorus oxychloride ($41.3 \mathrm{~g}, 269 \mathrm{mmol}, 25 \mathrm{~mL}$) was stirred at $120^{\circ} \mathrm{C}$ for 3 hours. The reaction mixture was then concentrated under reduced pressure to give a residue. The residue was diluted with ethyl acetate $(50 \mathrm{~mL})$ and ice water $(50 \mathrm{~mL})$. The aqueous phase was separated and extracted with ethyl acetate $(50 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with saturated sodium bicarbonate aqueous solution $(50 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$, dried over sodium sulfate, filtered, and concentrated to give 7-bromo-2-chloro-4-methyl-1,5-naphthyridine, ($2.5 \mathrm{~g}, 9.71 \mathrm{mmol}, 92 \%$ yield) as a brown solid which was used in the next step directly without further purification. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d \sigma$) $\delta=9.08(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Compound 28: 7-bromo- N-[(4-methoxyphenyl)methyl]-4-methyl-1,5-naphthyridin-2-amine.
Step 6: To a solution of 7-bromo-2-chloro-4-methyl-1,5-naphthyridine ($0.80 \mathrm{~g}, 3.11 \mathrm{mmol}, 1.00$ $e q$.) in dimethylsulfoxide (8.0 mL) was added potassium fluoride ($541 \mathrm{mg}, 9.32 \mathrm{mmol}, 218 \mu \mathrm{~L}$, 3.00 eq.) and (4-methoxyphenyl)methanamine ($852 \mathrm{mg}, 6.21 \mathrm{mmol}, 804 \mu \mathrm{~L}, 2$ eq.). The mixture
was stirred at $130^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture was diluted with water $(10 \mathrm{~mL})$ and extracted with ethyl acetate $(10 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine $(10 \times 2 \mathrm{~mL})$, dried over sodium sulfate, filtered, and concentrated to give $28(1.30 \mathrm{~g}$, crude, 86% purity) as a yellow oil which was used in the next step directly without further purification. LCMS $[\mathrm{M}+1]^{+}$: 358.1.

Compound 29: 7-bromo- N, N-bis[(2,4-dimethoxyphenyl)methyl]-4-methyl-1,5-naphthyridin-2amine.

Step 7: A mixture of 7-bromo-2-chloro-4-methyl-1,5-naphthyridine ($1.00 \mathrm{~g}, 3.88 \mathrm{mmol}, 1.00$ eq.), 1-(2,4-dimethoxyphenyl)-N-[(2,4-dimethoxyphenyl)methyl]methanamine ($2.46 \mathrm{~g}, 7.77$ mmol, 2.00 eq .), potassium fluoride ($677 \mathrm{mg}, 11.7 \mathrm{mmol}, 273 \mu \mathrm{~L}, 3.00 \mathrm{eq}$.) in dimethyl sulfoxide $(10 \mathrm{~mL})$ was degassed and stirred at $130^{\circ} \mathrm{C}$ for 12 hours under nitrogen atmosphere. The mixture was diluted with brine $(10 \mathrm{~mL})$, extracted with ethyl acetate $(20 \mathrm{~mL} \times 2)$ and the combined organic phases were dried over sodium sulfate, filtered, concentrated in vacuo. The residue was purified by column chromatography (SiO_{2}, ethyl acetate / petroleum ether 5-30\%) to give $29\left(1.70 \mathrm{~g}, 3.08 \mathrm{mmol}, 79 \%\right.$ yield) as a white solid. LCMS [M+1] ${ }^{+}: 540.0 .^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{br} \mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.85(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.84(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 3.79(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 12 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 1 \mathrm{H})$.

Compound 30: [6-[bis[(2,4-dimethoxyphenyl)methyl]amino]-8-methyl-1,5-naphthyridin-3yl]boronic acid.

Step 8: A mixture of compound 29 ($300 \mathrm{mg}, 557 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.), 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane ($212 \mathrm{mg}, 836 \mu \mathrm{~mol}, 1.50 \mathrm{eq}$.), potassium acetate ($164 \mathrm{mg}, 1.67 \mathrm{mmol}, 3.00 \mathrm{eq}$.) and $\mathrm{Pd}(\mathrm{dppf})_{2}-\mathrm{DCM}(45.5 \mathrm{mg}, 55.7 \mu \mathrm{~mol}, 0.10$ $e q)$ in 1,4-dioxane (5.0 mL) was degassed stirred at $110^{\circ} \mathrm{C}$ for 3 hours under a nitrogen atmosphere. The cooled reaction mixture was filtered and concentrated under vacuum to give a residue. The residue was washed with methyl alcohol (20 mL) and filtered to give $\mathbf{3 0}(450 \mathrm{mg}$, crude) as a black solid. The material was used directly in the next step without further purification. LCMS $[\mathrm{M}+1]^{+}: 503.9$

Compound 31, 6-[bis[(2,4-dimethoxyphenyl)methyl]amino]-8-methyl-1,5-naphthyridin-3-ol.

Step 9: A mixture of compound $29(200 \mathrm{mg}, 371 \mu \mathrm{~mol}, 1.00 \mathrm{eq}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(34.0 \mathrm{mg}, 37.1 \mu \mathrm{~mol}$, 0.100 eq), t-BuXphos ($31.6 \mathrm{mg}, 74.3 \mu \mathrm{~mol}, 0.200 \mathrm{eq}$) and potassium hydroxide ($208 \mathrm{mg}, 3.71$ $\mathrm{mmol}, 10.0 \mathrm{eq})$ in dioxane $(1.5 \mathrm{~mL})$ and water $(1.5 \mathrm{~mL})$ was degassed and stirred at $100^{\circ} \mathrm{C}$ for 12 hours under nitrogen atmosphere. The pH of the reaction mixture was adjusted to pH 7 with $\mathrm{HCl}(1 \mathrm{~N})$. Then the mixture was poured into water $(30 \mathrm{~mL})$ and extracted with ethyl acetate (15 $\mathrm{mL} \times 3$). The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (SiO_{2}, ethyl acetate / petroleum ether $10-50 \%$) to give $\mathbf{3 1}(170 \mathrm{mg}, 354 \mu \mathrm{~mol}, 95 \%$ yield) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.85-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.65(\mathrm{~s}$, $1 \mathrm{H}), 6.41-6.33(\mathrm{~m}, 4 \mathrm{H}), 4.75(\mathrm{~s}, 4 \mathrm{H}), 3.68(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 12 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H})$.

Example 32: 7-(isothiazol-4-yl)-4-methyl-1,5-naphthyridin-2-amine.

A mixture of 28 ($158 \mathrm{mg}, 0.44 \mathrm{mmol}, 1.00$ eq.), isothiazol-4-ylboronic acid ($114 \mathrm{mg}, 0.89 \mathrm{mmol}$, 2.00 eq.), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(32 \mathrm{mg}, 44 \mu \mathrm{~mol}, 0.10 \mathrm{eq}$.$) and cesium carbonate (143 \mathrm{mg}, 0.89 \mathrm{mmol}$, 2.00 eq.) in dioxane (2.0 mL) and water $(0.40 \mathrm{~mL})$ was degassed and purged with nitrogen atmosphere for 3 times, and then the mixture was stirred at $100^{\circ} \mathrm{C}$ for 1 hour under nitrogen atmosphere. The reaction mixture was diluted with water $(2.0 \mathrm{~mL})$ and extracted with ethyl acetate $(2.0 \mathrm{~mL} \times 3)$. Combined organic phase was washed with brine $(2.0 \mathrm{~mL})$, dried, filtered and concentrated to give a residue which was used into next step directly without further purification. The obtained residue was mixture with TFA $(2.0 \mathrm{~mL})$ and stirred at $70^{\circ} \mathrm{C}$ for 6 hours. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was basified with ammonium hydroxide $(0.10 \mathrm{~mL})$ to $\mathrm{pH}=9$. The solution was purified by prep-HPLC (neutral condition) to give $32(4.3 \mathrm{mg}, 17.7 \mu \mathrm{~mol}, 4 \%$ yield over 2 steps $)$ was obtained as a white solid. LCMS $[\mathrm{M}+1]^{+}: 243.2 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}-d_{4}\right) \delta=9.37$ (s, $1 \mathrm{H}), 9.04(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.67-2.64 (d, J = $1.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Example 33: 4-methyl-7-(3-pyridyloxy)-1,5-naphthyridin-2-amine.

Step 1: A mixture of 6-[bis[(2,4-dimethoxyphenyl)methyl]amino]-8-methyl-1,5-naphthyridin-3ol ($60 \mathrm{mg}, 126 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.), 3-bromopyridine ($60 \mathrm{mg}, 379 \mu \mathrm{~mol}, 37 \mu \mathrm{~L}, 3.0 \mathrm{eq}$.), $\mathrm{CuI}(4.8$ $\mathrm{mg}, 25 \mu \mathrm{~mol}, 0.20 \mathrm{eq}$.), 2-(dimethylamino) acetic acid ($5.2 \mathrm{mg}, 51 \mu \mathrm{~mol}, 0.40 \mathrm{eq}$.) and cesium carbonate ($127 \mathrm{mg}, 391 \mu \mathrm{~mol}, 3.10 \mathrm{eq}$.) in dioxane (1.0 mL) was degassed and purged with nitrogen 3 times, and then the mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 hrs . The reaction mixture was filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC $\left(\mathrm{SiO}_{2}\right.$, dichloromethane: methyl alcohol $\left.=20: 1\right)$ to give compound N, N-bis $[(2,4-$ dimethoxyphenyl)methyl]-4-methyl-7-(3-pyridyloxy)-1,5-naphthyridin-2-amine ($46 \mathrm{mg}, 83$ $\mu \mathrm{mol}, 66 \%$ yield) as a yellow solid. LCMS $[\mathrm{M}+1]^{+}$: 553.2.

Step 2: A mixture of N, N-bis[(2,4-dimethoxyphenyl)methyl]-4-methyl-7-(3-pyridyloxy)-1,5-naphthyridin-2-amine ($46 \mathrm{mg}, 83 \mu \mathrm{~mol}, 1.00$ eq.) and trifluoroacetic acid $(1.00 \mathrm{~mL}$) was stirred at $80^{\circ} \mathrm{C}$ for 0.5 hrs . The mixture was concentrated under vacuum. Then ammonium hydroxide $(2.0 \mathrm{~mL})$ was added, and the mixture was stirred for 0.5 hrs . The mixture was concentrated, and the formed residue was purified by prep-HPLC (ammonia hydroxide conditions) to give 33 (13 $\mathrm{mg}, 53 \mu \mathrm{~mol}, 64 \%$ yield $)$ as a white solid. LCMS $[\mathrm{M}+1]^{+}: 253.2 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=8.56(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{dd}, \mathrm{J}=4.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.43$ (m, 1H), 7.36-7.32(m, 1H), $7.31(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{br}, \mathrm{s}, 2 \mathrm{H})$, $2.70(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H})$.

Example 34: 4-methyl-7-(3-pyridylmethyl)-1,5-naphthyridin-2-amine.

Step 1: A mixture of $\mathbf{3 0}$ ($400 \mathrm{mg}, 795 \mu \mathrm{~mol}, 1.0$ eq.), 3-(chloromethyl)pyridine ($203 \mathrm{mg}, 1.59$ mmol, 2.00 eq.), cyclopentyl(diphenyl)phosphane; dichloromethane;dichloropalladium;iron (64.9 $\mathrm{mg}, 80 \mu \mathrm{~mol}, 0.1 \mathrm{eq}$.) and potassium carbonate ($220 \mathrm{mg}, 1.59 \mathrm{mmol}, 2.00 \mathrm{eq}$.) in 1,4-dioxane (4.0
$\mathrm{mL})$ and water (0.8 mL) was degassed and purged with nitrogen 3 times, and then stirred at 120 ${ }^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture was filtered and concentrated under reduced pressure and the formed residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate 10/1 to $0 / 1$) to give N, N-bis[(2,4-dimethoxyphenyl)methyl]-4-methyl-7-(3-pyridylmethyl)-1,5-naphthyridin-2-amine ($160 \mathrm{mg}, 287 \mu \mathrm{~mol}, 36 \%$ yield) as a yellow solid. LCMS [M+1] ${ }^{+}: 551.5$ Step 2: A solution of N, N-bis[(2,4-dimethoxyphenyl)methyl]-4-methyl-7-(3-pyridylmethyl)-1,5-naphthyridin-2-amine ($150 \mathrm{mg}, 272 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) in trifluoroacetic acid (1.00 mL) was stirred at $70^{\circ} \mathrm{C}$ for 0.5 hour. The reaction mixture was then diluted with dichloromethane, filtered and the filtrate concentrated under reduced pressure. The residue was purified by prep-HPLC (ammonium bicarbonate condition) to give $34(36 \mathrm{mg}, 142 \mu \mathrm{~mol}, 52 \%$ yield) as a white solid. LCMS $[\mathrm{M}+1]^{+}: 251.3 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}-d_{4}$) $\delta=8.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{dd}, J=1.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{dd}, J=4.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$; HPLC Rt $1.538 \mathrm{~min}, 99.5 \%$.

Example 35: 4-methyl-7-[(1-methylpyrazol-4-yl)methyl]-1,5-naphthyridin-2-amine.

Step 1: A mixture of $\mathbf{3 0}$ ($60 \mathrm{mg}, 119 \mu \mathrm{~mol}, 1.00$ eq.), 4-(chloromethyl)-1-methyl-pyrazole (40 $\mathrm{mg}, 238 \mu \mathrm{~mol}, 2.00$ eq.), cyclopentyl(diphenyl)phosphane;dichloromethane;dichloropalladium;iron ($10 \mathrm{mg}, 12 \mu \mathrm{~mol}, 0.10$ eq.) and potassium carbonate ($49 \mathrm{mg}, 358 \mu \mathrm{~mol}, 3.00$ eq.) in DMF $(1.0 \mathrm{~mL})$ was degassed and purged with nitrogen for 3 times. The mixture was then stirred at $100^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture was diluted with water $(10 \mathrm{~mL})$ and then extracted with ethyl acetate $(20 \mathrm{~mL} \times$ 3). The combined organic layers were washed with brine ($50 \mathrm{~mL} \times 2$), dried with sodium sulfate, filtered, and concentrated under reduced pressure. The formed residue was purified by prep-TLC (SiO_{2}, petroleum ether/ethyl acetate $1 / 1$) to give N, N-bis[(2,4-dimethoxyphenyl)methyl]-4-methyl-7-[(1-methylpyrazol-4-yl)methyl]-1,5-naphthyridin-2-amine (10 mg, $18 \mu \mathrm{~mol}, 15 \%$ yield) as a white solid. LCMS $[\mathrm{M}+1]^{+}$: 554.6.

Step 2: A solution of N, N-bis[(2,4-dimethoxyphenyl)methyl]-4-methyl-7-[(1-methylpyrazol-4-yl)methyl]-1,5-naphthyridin-2-amine ($10 \mathrm{mg}, 18 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) in trifluoroacetic acid (0.5 mL) was stirred at $70^{\circ} \mathrm{C}$ for 0.5 hour. The reaction mixture was then diluted with dichloromethane, filtered, and the filtrate concentrated under reduced pressure. The residue was purified by prepHPLC (ammonium bicarbonate condition) to give 35 ($1.6 \mathrm{mg}, 6.1 \mu \mathrm{~mol}, 34 \%$ yield) as a white solid. LCMS $[\mathrm{M}+1]^{+}: 254.3 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}-d_{4}$) $\delta=8.43(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ - $7.63(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, $2.60(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H})$; HPLC Rt $1.947 \mathrm{~min}, 99.6 \%$.

Example 36: N-[(6-amino-8-methyl-1,5-naphthyridin-3-yl)methyl]benzamide.

Step 1: A mixture of $29(1.70 \mathrm{~g}, 3.16 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , potassium (N$-Bocaminomethyl)trifluoroborate ($1.50 \mathrm{~g}, 6.31 \mathrm{mmol}, 2.00 \mathrm{eq}$.), [2-(2-aminophenyl)phenyl]palladium(1+);bis(1-adamantyl)-butyl-phosphane;methanesulfonate (230 $\mathrm{mg}, 316 \mu \mathrm{~mol}, 0.10 \mathrm{eq}$.), sodium carbonate ($1.00 \mathrm{~g}, 9.47 \mathrm{mmol}, 3.0$ eq.) in water (15 mL) and dioxane (75 mL) was degassed and purged with nitrogen 3 times. The mixture was then stirred at $100{ }^{\circ} \mathrm{C}$ for 12 hours under nitrogen atmosphere. The mixture was concentrated and the residue was triturated with petroleum ether/ethyl acetate $10 / 1(50 \mathrm{~mL})$ for 0.5 hour to give tert-butyl N -[[6-[bis[(2,4-dimethoxyphenyl)methyl]amino]-8-methyl-1,5-naphthyridin-3-
yl]methyl]carbamate, 29a ($1.60 \mathrm{~g}, 2.72 \mathrm{mmol}, 86 \%$ yield) as a white solid. LCMS $[\mathrm{M}+1]^{+}$: 589.3.

Step 2: A mixture of 29a ($1.50 \mathrm{~g}, 2.55 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in trifluoroacetic acid (5.0 mL) was stirred at $70^{\circ} \mathrm{C}$ for 1 hour. The mixture was concentrated under reduced pressure and the residue was diluted with water $(10 \mathrm{~mL})$ and washed ethyl acetate $(20 \mathrm{~mL} \times 2)$. The pH of the aqueous phase was then adjusted to pH 9 with sodium bicarbonate and exacted with ethyl acetate (100 $\mathrm{mL} \times 10$). The combined organic phases were washed with brine ($30 \mathrm{~mL} \times 2$), dried over
anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to give a 7-(aminomethyl)-4-methyl-1,5-naphthyridin-2-amine, 29b ($280 \mathrm{mg}, 1.49 \mathrm{mmol}, 58 \%$ yield) as a yellow solid. The residue was used for the next step without further purification. LCMS $[\mathrm{M}+1]^{+}$: 189.1; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}-d_{4}$) $\delta=8.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.92(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}), 2.62(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 3: To a solution of benzoic acid ($16 \mathrm{mg}, 128 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.$) in DMF (1.0 \mathrm{~mL}$) was added HATU ($73 \mathrm{mg}, 191 \mu \mathrm{~mol}, 1.50 \mathrm{eq}$.) and triethylamine ($53 \mu \mathrm{~L}, 383 \mu \mathrm{~mol}, 3.00 \mathrm{eq}$.). The mixture was stirred at $20^{\circ} \mathrm{C}$ for 0.5 hour and then $\mathbf{2 9 b}$ ($31 \mathrm{mg}, 166 \mu \mathrm{~mol}, 1.30 \mathrm{eq}$.) was added to the mixture and stirred at $20^{\circ} \mathrm{C}$ for 0.5 hour. The mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (HCl condition) to give $\mathbf{3 6}(7.5 \mathrm{mg}, 25$ $\mu \mathrm{mol}, 19 \%$ yield, HCl salt) as a white solid. LCMS [M+1] ${ }^{+}: 293.2 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}-d_{4}\right) \delta=8.82(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{br} \mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.61-$ $7.55(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H})$; HPLC Rt 1.667 min , 95.9\%.

Example 37: N -((6-amino-8-methyl-1,5-naphthyridin-3-yl)methyl)pyrimidine-4-carboxamide.

Step 1: To a solution of $\mathbf{2 9 a}(780 \mathrm{mg}, 1.32 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) in dichloromethane (10 \mathrm{~mL})$ was added zinc bromide ($895 \mathrm{mg}, 3.97 \mathrm{mmol}, 199 \mu \mathrm{~L}, 3.00 \mathrm{eq}$.). The mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 hours. The reaction mixture was concentrated, and the formed residue was diluted with water $(20 \mathrm{~mL})$ and extracted with ethyl acetate $(20 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine (50 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was triturated with ethyl acetate $(10 \mathrm{~mL})$ at for 30 minutes to give

7-(aminomethyl)- N, N-bis[(2,4-dimethoxyphenyl)methyl]-4-methyl-1,5-naphthyridin-2-amine 29c ($480 \mathrm{mg}, 982 \mu \mathrm{~mol}, 74 \%$ yield) as a yellow solid. LCMS $[\mathrm{M}+1]^{+}: 489.1$.

Step 2: To a solution of $\mathbf{2 9 c}(217 \mathrm{mg}, 443 \mu \mathrm{~mol}, 1.10 \mathrm{eq}$.$) and pyrimidine-4-carboxylic acid$ ($50.0 \mathrm{mg}, 403 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) in dichloromethane (2.0 mL) was added T3P (50% in ethyl acetate, $2.01 \mathrm{mmol}, 1.20 \mathrm{~mL}, 5.00 \mathrm{eq}$.) and triethylamine ($1.21 \mathrm{mmol}, 168 \mu \mathrm{~L}, 3.00 \mathrm{eq}$.). The mixture was stirred at $20^{\circ} \mathrm{C}$ for 2 hours. The mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC $\left(\mathrm{SiO}_{2}\right.$, dichloromethane: methyl alcohol $=10: 1)$ to give N-[[6-[bis[(2,4-dimethoxyphenyl)methyl]amino]-8-methyl-1,5-naphthyridin-3-yl]methyl]pyrimidine-4-carboxamide ($80 \mathrm{mg}, 135 \mu \mathrm{~mol}, 33 \%$ yield) as a white solid. LCMS $[\mathrm{M}+1]^{+}: 595.2$.
Step 3: To a solution of N-[[6-[bis[(2,4-dimethoxyphenyl)methyl]amino]-8-methyl-1,5-naphthyridin-3-yl]methyl]pyrimidine-4-carboxamide ($80 \mathrm{mg}, 135 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) in trifluoroacetic acid (1.50 mL) was stirred at $70^{\circ} \mathrm{C}$ for 0.5 hour. The mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC $(\mathrm{HCl}$ condition)) to give $37\left(17 \mathrm{mg}, 57 \mu \mathrm{~mol}, 43 \%\right.$ yield) as a white solid. LCMS $[\mathrm{M}+1]{ }^{+}=295.1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=14.68-14.08(\mathrm{~m}, 1 \mathrm{H}), 9.92(\mathrm{brt}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.48-9.24$ $(\mathrm{m}, 2 \mathrm{H}), 9.12(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.48-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.08-8.00(\mathrm{~m}$, $2 \mathrm{H}), 7.16(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{br} \mathrm{d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H})$; HPLC Rt $1.440 \mathrm{~min}, 100 \%$.

PRMT5/MTA X-ray Co-crystallography

PRMT5/MTA protein was expressed, purified, and crystallized as previously described. ${ }^{1}$ Crystals were harvested and incubated in a soak solution consisting of reservoir and $5-10 \mathrm{mM}$ fragment for 2-5 hours, dipped in cryoprotectant (soak solution plus 20\% ethylene glycol) and flash frozen in pucks for data collection. X-ray diffraction data was collected at the following beamlines: Advanced Photon Source (APS) NE-CAT ID-E, Swiss Light Source (SLS) PXII/X10SA and PXIII/X06DA, and Diamond Light Source (DLS) I03 (Table ESI-1). PRMT5 data sets indexed in the I222 space group and the images were integrated and scaled using HKL2000. ${ }^{2}$ The PRMT5 crystals were highly anisotropic and STARANISO server was used to calculate ellipsoidal completeness for several structures. ${ }^{3}$ Structures were determined by
molecular replacement using Phaser ${ }^{4}$ and refined through iterative rounds of automated refinement using phenix.refine ${ }^{5}$ and manual refitting in Coot. ${ }^{6}$ Coordinates and structure factors are deposited in the PDB with accession codes: 7UY1, 7UYF, 7ZUP, 7ZUQ, 7ZUU, 7ZUY, 7ZV2, 7ZVL, 7ZVU, 8CSG, 8CTB.

Compound	Fragment 5	Fragymaket 73	Fragymelat 9
PDB ID	80SGG	\%	701)
Data Collection			
Beamline Wavelength (\AA) Detector Resolution (\AA) ${ }^{\text {a }}$ Space Group Unit Cell a,b,c (\AA) \# Unique Refls Redundancy Completeness (\%) < $1 / s_{i}$ > $\mathrm{R}_{\text {merge }}{ }^{\mathrm{b}}$ $\mathrm{CC}_{1 / 2}{ }^{\mathrm{c}}$		AFSSIDET 0.979 $44.7-(2.95-2.3 .699)-2.61)$ 1222 1880 $2188837($ (142024) 2.7 (1.9) 76.1 (23.7) 9.4 (1.5) 0.13 (0.60) 0.99	
Refinement			
$\begin{array}{\|l\|} \hline R_{\text {Free }}(\%)^{e} \\ R(\%)^{d} \\ \text { B Average }\left(\AA^{2}\right) \end{array}$	$\begin{aligned} & 23.9 \\ & 21.0 \\ & 28.7 \end{aligned}$	$\begin{aligned} & 28.2 \\ & 23.2 \\ & 75.5 \end{aligned}$	$\begin{aligned} & 27.2 \\ & 22.1 \\ & 33.2 \end{aligned}$
RMS Deviations			
Bond Lengths (\AA) Bond Angles (${ }^{\circ}$)	$\begin{gathered} \hline 0.011 \\ 1.6 \end{gathered}$	$\begin{gathered} \hline 0.001 \\ 0.38 \end{gathered}$	$\begin{gathered} 0.007 \\ 1.2 \end{gathered}$
Ramachandran (\%)			
Favored Outliers	$\begin{gathered} 99.6 \\ 0.2 \end{gathered}$	$\begin{gathered} 93.1 \\ 0.4 \end{gathered}$	$\begin{gathered} 99.6 \\ 0.1 \end{gathered}$

Table ESI-1 (continued). X-ray data collection and refinement statistics for PRMT5 crystal structures			
redury Cempleundss (\%)	Exapmpos. 18	Exagspde 22	Exagrple 25
	2¢zzu(3.1)	1278 $\mathbf{2}^{29}$	
Data Collection			
Bealflin	DLST03	DLSY03	DLSY03
Refinement ${ }^{\text {a }}$ ()	0.919	0.919	0.919
	$\begin{gathered} \text { Eigerz6̊ } 16 \mathrm{M} \\ 109.5-21988(2.26- \\ 1498) \end{gathered}$	$\begin{gathered} \text { Eigerz2ke 16M } \\ 109 ? 1 .-9.94 \\ (2.165 .1994) \\ \hline \end{gathered}$	$\begin{gathered} \text { Eigerzxet 16M } \\ 109 \text { ?2 -9.94 } \\ (2.135 .694) \\ \hline \end{gathered}$
Rursceerolto s	1222	1222	1222
Bond Lengtitic (A) B Uniqua R Reflis	$\begin{gathered} 104.2,0.386,178.8 \\ 39692 .(1984) \end{gathered}$	$\begin{gathered} 104.5,13.888,178.9 \\ 49072.62455) \end{gathered}$	$\begin{gathered} 105.2,1392,178.6 \\ 60214.3012) \end{gathered}$
Rámachandran Q8) mpleteness (\%)	$\begin{gathered} 11.9(14.7) \\ 93.2^{\Delta} \\ \hline \end{gathered}$	$\begin{gathered} 11.8^{(13.1)} \\ 93.6^{\Delta} \\ \hline \end{gathered}$	$\begin{gathered} 12.1^{(14.1)} \\ 94.9^{\Delta} \end{gathered}$
Fduspred	1099(5.9)	1399(2.7)	1399(6.7)
Buthiters	$0.16 .51 .5)$	$0.10 .61 .5)$	0.10.41.4)
$\mathrm{CC}_{1 / 2}{ }^{\text {c }}$	0.99	0.99	0.99
Refinement			
$R_{\text {Free }}(\%)^{e}$	27.0	27.5	26.5
$R(\%)^{\text {d }}$	22.1	23.4	23.8
B Average (\AA^{2})	30.7	33.1	30.6
RMS Deviations			
Bond Lengths(A)	0.007	0.007	0.014

Bond Angles (${ }^{\circ}$)	1.5	1.4	1.8
$\begin{array}{\|l} \hline \begin{array}{l} \text { Ramachandran } \\ \text { (\%) } \end{array} \\ \hline \end{array}$			
Compound	Example		Example 34
PDB ID	7ZUY		7ZUU
Data Collection			
Beamline Wavelength (\AA) Detector Resolution (\AA) ${ }^{\text {a }}$ Space Group Unit Cell a,b,c (Å) \# Unique Refls Redundancy Completeness (\%) $</ / s_{i}>$ $\mathrm{R}_{\text {merge }}{ }^{\mathrm{b}}$ $\mathrm{CC}_{1 / 2}{ }^{\mathrm{c}}$	$\begin{array}{r} \text { DLS IO3 } \\ 0.919 \\ \text { Eiger2 XE } \\ 109.7-1 . \\ (2.23-1.9 \\ \text { I222 } \\ 105.2,139.1, \\ 48889(24 \\ 11.8(13 . \\ 93.7^{\wedge} \\ 12.8(1.7 \\ 0.10(1.5 \\ 0.99 \\ \hline \end{array}$	$\begin{aligned} & 3 \\ & 16 \mathrm{M} \\ & 1.97 \\ & 97) \\ & 1,178.5 \\ & 444) \\ & 3.8) \\ & \hline 7) \\ & \hline 5) \end{aligned}$	$\begin{gathered} \hline \text { DLS I03 } \\ 0.919 \\ \text { Eiger2 XE 16M } \\ 109.7-1.95 \\ (2.17-1.95) \\ 1222 \\ 105.2,139.2,178.5 \\ 60214(3012) \\ 12.1(14.1) \\ 94.6^{\Delta} \\ 13.8(1.7) \\ 0.1(1.4) \\ 0.99 \end{gathered}$
Refinement			
$\begin{aligned} & R_{\text {free }}(\%)^{e} \\ & R(\%)^{d} \\ & B \text { Average }\left(\AA^{2}\right) \end{aligned}$	$\begin{aligned} & 26.9 \\ & 22.4 \\ & 31.2 \end{aligned}$		$\begin{aligned} & 28.0 \\ & 23.0 \\ & 29.5 \end{aligned}$
RMS Deviations			
Bond Lengths((\AA) Bond Angles (${ }^{\circ}$)	$\begin{gathered} 0.07 \\ 1.5 \end{gathered}$		$\begin{gathered} 0.07 \\ 1.4 \end{gathered}$
Ramachandran (\%)			
Favored Outliers	$\begin{gathered} \hline 99.7 \\ 0.3 \end{gathered}$		$\begin{gathered} 99.6 \\ 0.4 \end{gathered}$
${ }^{\text {a }}$ Numbers in parentheses refer to the highest resolution shell. ${ }^{\mathrm{b}} R_{\text {merge }}=\Sigma_{h k \mid} \Sigma_{i}\left\|I_{h k, i}-\left\langle I_{h k\rangle}\right\rangle\right\| / \Sigma_{n k \mid} \Sigma_{i} I_{n k, l}$, where $I_{h k, i}$ is the scaled intensity of the $i^{\text {th }}$ measurement of reflection hkl, $\left\langle I_{h k l}>\right.$ is the average intensity for that reflection. ${ }^{\circ} \mathrm{CC}_{1 / 2}=$ Pearson Correlation Coefficient between two random half datasets. ${ }^{\mathrm{d}} R=\Sigma_{h k \mid}\left\|F_{0}-F_{\mathrm{c}}\right\| / \Sigma_{h k \mid}\left\|F_{0}\right\| \times 100,{ }^{\mathrm{e}} R_{\text {free }}$ was calculated as for R, but on a test set comprising 5% of the data excluded from refinement. Δ Ellipsoidal completeness was calculated using Staraniso.			

References

1. Smith, C. R.; Aranda, R.; Bobinski, T. P.; Briere, D. M.; Burns, A. C.; Christensen, J. G.; Clarine, J.; Engstrom, L. D.; Gunn, R. J.; Ivetac, A.; Jean-Baptiste, R.; Ketcham, J. M.; Kobayashi, M.; Kuehler, J.; Kulyk, S.; Lawson, J. D.; Moya, K.; Olson, P.; Rahbaek, L.; Thomas, N. C.; Wang, X.; Waters, L. M.; Marx, M. A., Fragment-Based Discovery of MRTX1719, a Synthetic Lethal Inhibitor of the PRMT5*MTA Complex for the Treatment of MTAP-Deleted Cancers. J Med Chem 2022, 65 (3), 1749-1766.
2. Otwinowski, Z.; Minor, W., Processing of X-ray diffraction data collected in oscillation mode. In Methods Enzymol, 1997/01/01 ed.; 1997; Vol. 276, pp 307-26.
3. Tickle, I. J.; Flensburg, C.; Keller, P.; Paciorek, W.; Sharff, A.; Smart, O.; Vornhein, C.; Bricogne, G. STARANISO, 3.344; Global Phasing Limited: 2022.
4. McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R. J., Phaser crystallographic software. J Appl Crystallogr 2007, 40 (Pt 4), 658-674.
5. Liebschner, D.; Afonine, P. V.; Baker, M. L.; Bunkoczi, G.; Chen, V. B.; Croll, T. I.; Hintze, B.; Hung, L. W.; Jain, S.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R. D.; Poon, B. K.; Prisant, M. G.; Read, R. J.; Richardson, J. S.; Richardson, D. C.; Sammito, M. D.; Sobolev, O. V.; Stockwell, D. H.; Terwilliger, T. C.; Urzhumtsev, A. G.; Videau, L. L.; Williams, C. J.; Adams, P. D., Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 2019, 75 (Pt 10), 861-877.
6. Emsley, P.; Cowtan, K., Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004, 60 (Pt 12 Pt 1), 2126-32.
