Exploration of Piperidine 3D Fragment Chemical Space: Synthesis and 3D Shape Analysis of Fragments Derived from 20 Regio- and Diastereoisomers of Methyl Substituted Pipecolinates

 C. Blakemore, ${ }^{\text {d }}$ Claudia De Fusco, ${ }^{e}$ Simon C. C. Lucas, ${ }^{\text {f }}$ Stephen D. Roughley, ${ }^{\text {c }}$ Lewis R. Vidler, ${ }^{\mathrm{g}}$ Maria Ann Whatton, ${ }^{\text {h }}$ Alison J.-A. Woolford, ${ }^{\text {i }}$ Gail L. Wrigley ${ }^{j}$ and Peter O’Brien*a
${ }^{\text {a }}$ Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
${ }^{\text {b }}$ Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan.
${ }^{c}$ Vernalis (R\&D) Ltd, Granta Park, Abington, Cambridge, CB21 6GB, UK.
${ }^{\mathrm{d}}$ Medicine Design, Pfizer Inc, 445 Eastern Point Road, Groton, CT 06340, USA.
${ }^{\mathrm{e}}$ Current address: Bayer AG, Research and Development, Pharmaceuticals, Synthetic Modalities, 13353, Berlin, Germany.
${ }^{\text {f }}$ Hit Discovery, Discovery Sciences, R\&D, AstraZeneca, Cambridge, CB4 0WG, UK.
${ }^{\mathrm{g}}$ Current address: Amphista Therapeutics, The Cori Building, Granta Park, Great Abington, Cambridge CB21 6GQ.
${ }^{\text {h }}$ Current address: Evotec (UK) Ltd, Dorothy Crowfoot Hodgkin Campus, 114 Innovation Drive, Milton Park, Abingdon, Oxon, OX14 4RZ UK.
${ }^{i}$ Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA.
${ }^{j}$ Medicinal Chemistry, Oncology R\&D, AstraZeneca, Cambridge, UK.

Index

1. Experimental Details S3
1.1 General S3
1.2 General Procedures S4
1.3 Experimental Procedures and Characterisation Data S5
2. Isomers of dimethyl pyridine $\mathbf{1}$ and dimethyl NH piperidine $\mathbf{2}$ S35
3. Virtual Library Analysis S36
3.1 Principal Moments of Inertia and Molecular Properties S36
3.2 Virtual Library Enumeration and Lead-Likeness Analysis S37
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S39
5. References S77

1. Experimental Details

1.1. General

All-non aqueous reactions were carried out under oxygen free Ar or N_{2} using flame-dried glassware. $\mathrm{Et}_{2} \mathrm{O}$ and THF were freshly distilled from sodium and benzophenone. Alkyllithiums were titrated against N-benzylbenzamide before use. Brine refers to a saturated solution. Water is distilled water.

Flash column chromatography was carried out using Fluka Chemie GmbH silica (220-440 mesh). Thin layer chromatography was carried out using commercially available Merck F_{254} aluminium backed silica plates. Proton $(400 \mathrm{MHz})$ and carbon $(100.6 \mathrm{MHz})$ NMR spectra were recorded on a Jeol ECX400 instrument using an internal deuterium lock. For samples recorded in CDCl_{3}, chemical shifts are quoted in parts per million relative to $\mathrm{CHCl}_{3}\left(\delta_{\mathrm{H}} 7.26\right)$ and CDCl_{3} ($\delta_{\mathrm{C}} 77.0$, central line of triplet). Carbon NMR spectra were recorded with broad band proton decoupling and assigned using DEPT experiments. Coupling constants (J) are quoted in Hertz. Melting points were carried out on a Gallenkamp melting point apparatus. Infrared spectra were recorded on a Perkin Elmer UATR Two FT-IR spectrometer. Electrospray high and low resonance mass spectra were recorded at room temperature on a Bruker Daltronics microOTOF spectrometer.

1.2 General Procedures

General Procedure A: Pyridine methyl ester formation

Thionyl chloride (0.06-1.45 mL, $0.80-20.0 \mathrm{mmol}$, 1.1-3.0 eq.) was added dropwise over 5 min to a stirred solution of the carboxylic acid (0.73-10.0 mmol, 1.0 eq.) in $\mathrm{MeOH}(5-20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar . The resulting solution was stirred and heated at reflux for 1 h or 16 h . The mixture was then allowed to cool to rt and the solvent was evaporated under reduced pressure. And then the mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with saturated $\mathrm{NaHCO}_{3(\mathrm{aq})}(10 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product.

General procedure B: Pyridine hydrogenation and neutralization

$\mathrm{PtO}_{2}(10-60 \mathrm{mg}, 0.05-0.26 \mathrm{mmol}, 10-30 \mathrm{~mol} \%)$ or $10 \% \mathrm{Pd} / \mathrm{C}(70 \mathrm{mg}, 0.07 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ was added to a stirred solution of pyridine ester $(0.45-2.64 \mathrm{mmol})$ in $\mathrm{AcOH}(1-5 \mathrm{~mL})$ at rt under Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three times. After the final evacuation, H_{2} was charged and the reaction mixture was stirred vigorously under a balloon of H_{2} for 24 h . The solids were removed by filtration through Celite and washed with $\mathrm{MeOH}(30 \mathrm{~mL})$. The filtrate was evaporated under reduced pressure to give the crude product. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and $\mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})}(2 \mathrm{~mL})$ was added. The two layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product.

General Procedure C: Piperidine epimerisation via KOtBu

N-Benzyl $/ N$-Boc piperidine ($50-173 \mathrm{mg}, 0.20-0.70 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added to a flask containing dry THF ($3-5 \mathrm{~mL}$) at rt under Ar. The reaction flask was evacuated under reduced pressure and back-filled with Ar three times and the solution was cooled to $-78^{\circ} \mathrm{C} . \mathrm{KOtBu}(0.24-0.84 \mathrm{~mL}$ of a 1 M solution in THF, 0.24-0.84 mmol, 1.2 eq.) was added dropwise. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 2 h. Then, water (1 mL) was added at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was allowed to warm to rt . The mixture was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$ and the combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product.

1.3 Experimental Procedures and Charterisation

Methyl 2-methylpyridine-3-carboxylate 3a

Using general procedure A, thionyl chloride ($0.77 \mathrm{~mL}, 10.60 \mathrm{mmol}, 3.0 \mathrm{eq}$.$) and 2-methyl-nicotinic$ acid ($485 \mathrm{mg}, 3.54 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{MeOH}(20 \mathrm{~mL})$ gave pyridine $3 \mathrm{a}(443 \mathrm{mg}, 82 \%)$ as an orange oil, IR (ATR) 1722 (C=O), 1571, 1433, 1278, 1084, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61(\mathrm{dd}, J=$ $5.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 8.19(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.21(\mathrm{dd}, J=8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 3.92(\mathrm{~s}, 3 \mathrm{H}$, OMe), 2.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1$ ($\mathrm{C}=\mathrm{O}$), 160.1 (ipso-Ar), 152.0 (Ar), 138.6 (Ar), 125.5 (ipso-Ar), 121.0 (Ar), 52.4 (OMe), $25.0(\mathrm{Me}) ;$ HRMS m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}(\mathrm{M}+$ $\mathrm{H})^{+}$152.0706, found 152.0703 (+1.8 ppm error).

Lab Book - PJ-05-50

Methyl $\quad\left(2 R^{*}, 3 R^{*}\right)$-2-methylpiperidine-3-carboxylate cis-4a and methyl (2R*,3 \boldsymbol{S}^{*})-2-methylpiperidine-3-carboxylate trans-4a

Using general procedure $\mathrm{B}, \mathrm{PtO}_{2}(10 \mathrm{mg}, 0.05 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and pyridine $3 \mathrm{a}(70 \mathrm{mg}, 0.45 \mathrm{mmol}$, 1.0 eq.) in $\mathrm{AcOH}(5 \mathrm{~mL})$ gave the crude product which contained a 90:10 mixture of piperidines cis-4a and trans-4a ($65 \mathrm{mg}, 93 \%$) as a yellow oil, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.68(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.10-3.03$ (m, 1H, NCH), 2.96 (qd, $J=7.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Me}$), 2.66 (ddd, $J=13.5,10.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 2.56-2.51 (m, 1H, CHCO_{2}), 2.02-1.94 (m, 1H, CH), 1.80-1.71 (m, 1H, CH), 1.71-1.60 (m, 2H, CH and $\mathrm{NH}), 1.42-1.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2.7 \mathrm{H}, \mathrm{CHMe}), 1.06(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for cis-4a: $\delta 174.8(\mathrm{C}=\mathrm{O}), 52.4(\mathrm{CHMe}), 51.3(\mathrm{OMe}), 45.3\left(\mathrm{NCH}_{2}\right), 44.1$
$\left(\mathrm{CHCO}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 19.2(\mathrm{CHMe})$. Spectroscopic data consistent with those reported in the literature. ${ }^{1}$

Lab Book - PJ-05-51

The relative stereochemistry of cis-4a and trans-4a has been proven unambiguously in our previous work. ${ }^{2}$

Methyl $\left(2 R^{*}, 3 R^{*}\right)$-1-benzyl-2-methylpiperidine-3-carboxylate cis-5a and methyl ($2 R^{*}, 3 S^{*}$)-1-benzyl-2-methylpiperidine-3-carboxylate trans-5a

$\mathrm{BnBr}(0.14 \mathrm{~mL}, 1.20 \mathrm{mmol}, 3 \mathrm{eq}$.$) was added dropwise to a 90: 10$ solution of piperidine cis- $\mathbf{4 a}$ and trans-4a ($63 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{sat} . \mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}(4 \mathrm{~mL})$ at rt under Ar . The resulting solution was stirred at rt for 16 h . The two layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product as a colourless oil. Purification by flash column chromatography on silica with 80:20 hexane-EtOAc as eluent gave N-benzyl piperidine cis-5a ($63 \mathrm{mg}, 64 \%$) as a colourless oil, $R_{\mathrm{F}}\left(80: 20\right.$ hexane-EtOAc) 0.13 ; IR (ATR) 2943, 1732 (C=O), 1138, 732, $697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.28(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 3.66(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}), 3.65$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.54(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}), 3.42(\mathrm{qd}, J=6.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHMe}), 2.84$ (ddd, J $\left.=12.5,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.48-2.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}), 1.82-1.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.73-1.58(\mathrm{~m}, 2 \mathrm{H}$, CH), 1.56-1.45 (m, 1H, CH), $0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.7$ (C=O), 139.8 (ipso-Ph), 128.6 (Ph), 128.4 (Ph), 126.9 (Ph), 59.3 ($\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 54.1$ (NCHMe), 51.6 $(\mathrm{OMe}), 46.1\left(\mathrm{CHCO}_{2}\right), 44.6\left(\mathrm{NCH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right), 20.7\left(\mathrm{CH}_{2}\right), 6.2(\mathrm{CHMe})$; HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 248.1645$, found 248.1652 (-2.0 ppm error).

Lab Book - PJ-05-53.
$\operatorname{BnBr}(0.23 \mathrm{~mL}, 1.91 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added dropwise to a $90: 10$ solution of piperidine cis- $\mathbf{4 a}$ and trans-4a ($250 \mathrm{mg}, 1.59 \mathrm{mmol}, 1.0$ eq.) in $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-sat $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq)}}(6 \mathrm{~mL})$ at rt under Ar . The resulting solution was stirred at rt for 16 h . The two layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product as a colourless oil. Purification by flash column chromatography on silica with 80:20 hexane-EtOAc as eluent gave a 90:10 mixture N-benzyl piperidine cis-5a and N benzyl piperidine trans-5a ($274 \mathrm{mg}, 70 \%$) as a colourless oil.

Lab Book - PJ-06-18.

Using general procedure C, a 90:10 mixture of N-benzyl piperidine cis-5a and trans-5a ($150 \mathrm{mg}, 0.61$ mmol, 1.0 eq.) and KOtBu (0.73 mL of a 1 M solution in THF, $0.73 \mathrm{mmol}, 1.2$ eq.) in THF (5 mL) gave the crude product as an orange oil. Purification by flash column chromatography on silica with 90:10 hexane-EtOAc as eluent gave an 80:20 mixture of N-benzyl piperidine cis-5a and trans-5a (61 $\mathrm{mg}, 41 \%$) and N-benzyl piperidine trans- $5 \mathrm{a}(84 \mathrm{mg}, 56 \%)$ as a colourless oil, R_{F} ($80: 20$ hexane- $\mathrm{Et}_{2} \mathrm{O}$) 0.19; IR (ATR) 2943, 2795, 1732 (C=O), 1434, 1138, 732, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.32-7.27 (m, 4H, Ph), 7.24-7.20 (m, 1H, Ph), 3.95 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}$), 3.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.25(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}), 2.76-2.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHMe}$ and NCH$), 2.35(\mathrm{ddd}, J=10.0,9.0,4.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 1.88-1.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.65-1.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.51-1.44$ (m, 1H, CH), $1.15(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.7(\mathrm{C}=\mathrm{O}), 139.5$ (ipso- Ph), $129.0(\mathrm{Ph}), 128.3(\mathrm{Ph}), 126.9(\mathrm{Ph}), 57.6\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 57.2(\mathrm{CHMe}), 51.7(\mathrm{OMe}), 51.2\left(\mathrm{NCH}_{2}\right)$, $49.5\left(\mathrm{CHCO}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right), 17.3(\mathrm{CHMe})$; HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$ 248.1645 , found 248.1646 (-2.9 ppm error).

Lab Book PJ-06-22

1-tert-Butyl 4-methyl ($2 R^{*}, 4 R^{*}$)-2-methylpiperidine-1,4-dicarboxylate cis-5b

PtO_{2} (114 mg, $0.5 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was added to a stirred solution of methyl 2-chloro-6-methylpyridine-4-carboxylate 3b ($928 \mathrm{mg}, 5.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in glacial acetic acid (20 mL). The reaction flask evacuated under reduced pressure and back filled with Ar three times. After a final evacuation, a balloon of hydrogen was added, and the reaction mixture was stirred vigorously at rt for 16 h . The mixture was filtered through Celite and washed with $\mathrm{MeOH}(20 \mathrm{~mL})$ and the filtrate was evaporated under reduced pressure to give a $>95: 5$ diastereomeric mixture of crude piperidine cis$\mathbf{4 b} \cdot \mathrm{AcOH}$. cis $-\mathbf{4 b} \cdot \mathrm{AcOH}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(3.48 \mathrm{ml}, 25.0 \mathrm{mmol}, 5.0 \mathrm{eq}$.$) and$ $\mathrm{Boc}_{2} \mathrm{O}(1.31 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.2 \mathrm{eq}$.) were added. The resulting mixture was stirred at rt for 16 h . Then, water (20 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added, and the two layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with $85: 15$ hexane-EtOAc as eluent gave piperidine cis-5b $(1.16 \mathrm{~g}, 90 \%$, $>95: 5 \mathrm{dr}$) as a clear oil, R_{F} (8:2 hexane-EtOAc) 0.24; IR (ATR) 1732 (C=O, Ester), 1686 (C=O, Boc), 1409, 1363, 1198, 1170, 1072, $1051 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.25-4.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH})$, 3.83 (ddd, $J=14.0,6.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 3.70 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.08 (ddd, $J=14.0,12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$, NCH), 2.69-2.51 (m, 1H, CH), 2.04-1.85 (m, 3H, CH), 1.73 (ddd, $J=13.5,12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $1.45(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe} 3), 1.07(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.8\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $154.9\left(\mathrm{CO}_{2} \mathrm{CMe}_{3}\right), 79.3\left(\mathrm{CMe}_{3}\right), 51.8\left(\mathrm{CO}_{2} \mathrm{Me}\right), 46.8(\mathrm{NCH}), 35.7(\mathrm{CH}), 35.5\left(\mathrm{NCH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 28.5$ ($\mathrm{CMe} e_{3}$), $25.6\left(\mathrm{CH}_{2}\right)$, $17.7(\mathrm{CHMe})$; HRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 280.1519$, found 280.1519 (0.0 ppm error). Spectroscopic data consistent with those reported in the literature. ${ }^{3}$

Lab Book - JDF_B_140
The relative stereochemistry of $c i s-\mathbf{5 b}$ was established through comparison to literature data. ${ }^{3}$

1,4-Di-tert-butyl $\left(2 R^{*}, 4 S^{*}\right)$-2-methylpiperidine-1,4-dicarboxylate trans-S1 and 1-tert-Butyl 4methyl ($2 R^{*}, 4 S^{*}$)-2-methylpiperidine-1,4-dicarboxylate trans-5b

trans-S1

trans-5b

Using general procedure C , N-Boc piperidine cis- $5 \mathbf{b}$ ($100 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $\mathrm{KOtBu}(470 \mu \mathrm{~L}$ of a 1.0 M solution in THF, $0.47 \mathrm{mmol}, 1.2$ eq.) in THF (5 mL) gave a $40: 60$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of trans-S1 and trans-5b as single diastereomers. Purification by flash column chromatography on silica with 90:10 to 80:20 hexane-EtOAc as eluent gave tert-butyl ester trans-S1 ($36 \mathrm{mg}, 31 \%$) as a clear oil, R_{F} ($9: 1$ hexane-EtOAc) 0.24 ; IR (ATR) 1954, 1727 ($\mathrm{C}=\mathrm{O}$, ester), 1690 $(\mathrm{C}=\mathrm{O}, \mathrm{Boc}), 1412,1392,1365,1335,1152,1072 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, NCH), 4.00 ($\mathrm{br} \mathrm{d}, ~ J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 2.82 (br t, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 2.56-2.40 (m, 1H, CH), $1.85(\mathrm{br} \mathrm{d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.73-1.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.52-1.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right)$, 1.43 (s, 9H, CMe_{3}), 1.12 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5$ $\left(\mathrm{CO}_{2} \mathrm{CMe}_{3}\right), 154.7\left(\mathrm{CO}_{2} \mathrm{~N}\right), 80.3\left(\mathrm{CMe}_{3}\right), 79.3\left(\mathrm{CMe}_{3}\right), 45.5\left(\mathrm{br}, \mathrm{NCH}_{2}\right), 37.6(\mathrm{br}, \mathrm{CH}), 37.1(\mathrm{CH}), 32.7$ $\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CMe}_{3}\right), 28.3\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CMe}_{3}\right), 15.9(\mathrm{CHMe})$; HRMS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{4}(\mathrm{M}+$ $\mathrm{Na})^{+} 322.1989$, found 322.1985 (+1.1 ppm error) and methyl ester trans- $\mathbf{5 b}$ ($53 \mathrm{mg}, 53 \%$) as a clear oil, R_{F} (9:1 hexane-EtOAc) 0.14; 1958, 1736 ($\mathrm{C}=\mathrm{O}$, ester), 1686 ($\mathrm{C}=\mathrm{O}, \mathrm{Boc}$), 1411, 1365, 1328, 1162, $1125,1072 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.47$ (br s, $1 \mathrm{H}, \mathrm{NCH}$), $4.00(\mathrm{br} \mathrm{d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$, NCH), 3.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 2.83 (br t, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), $2.70-2.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.88(\mathrm{~d}, J=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.77-1.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.57-1.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.12(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.5\left(\mathrm{CO}_{2} \mathrm{Me}\right), 154.6\left(\mathrm{CO}_{2} \mathrm{~N}\right), 79.5\left(\mathrm{CMe}_{3}\right), 51.8$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right), 45.6(\mathrm{br}, \mathrm{NCH}), 37.5\left(\mathrm{NCH}_{2}\right), 36.2(\mathrm{br}, \mathrm{CH}), 32.7\left(\mathrm{CH}_{2}\right), 28.4(\mathrm{CMe} 3), 28.1\left(\mathrm{CH}_{2}\right), 15.8$ (CHMe); HRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 280.1519$, found 280.1521 (-0.5 ppm error).

Lab Book - JDF_B_280

Methyl $\left(3 R^{*}, 6 S^{*}\right)-6$-methylpiperidine-3-carboxylate cis-4c and methyl ($3 R^{*}, 6 R^{*}$)-6-methylpiperidine-3-carboxylate trans-4c

Using general procedure $\mathrm{B}, \mathrm{PtO}_{2}(60 \mathrm{mg}, 0.26 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and methyl-6-methylnicotinate (400 $\mathrm{mg}, 2.64 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{AcOH}(4 \mathrm{~mL})$ gave the crude product which contained an $85: 15$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of piperidines cis-4c and trans-4c ($386 \mathrm{mg}, 93 \%$) as a colourless oil, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.70$ (s, 2.55H, OMe), 3.65 ($\mathrm{s}, 0.45 \mathrm{H}, \mathrm{OMe}$), 3.41 (ddd, $J=13.0,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, NCH), 2.81 (dd, $J=13.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.64(\mathrm{dqd}, J=13,6.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHMe}), 2.48-2.44$ (m, 1H, CH), 2.20-2.12 (m, 1H, CH), $2.09(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 1.71-1.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.54$ (ddd, $J=13.5$, $7.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 1.23-1.12 (m, 1H, CH), 1.07-1.02 (m, 3H, Me); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) δ $175.2(\mathrm{C}=\mathrm{O}), 51.8(\mathrm{OMe}), 51.8(\mathrm{CH}), 47.4\left(\mathrm{NCH}_{2}\right), 39.1(\mathrm{CH}), 31.5\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 22.7(\mathrm{Me})$. Spectroscopic data of cis-4c consistent with those reported in the literature. ${ }^{4}$

Lab Book - PJ-04-56.

The relative stereochemistry of cis-4c and trans-4c has been proven unambiguously in our previous work, ${ }^{2}$ and through synthesis of the $N-\mathrm{Cbz}$ analogue and comparison with literature data. ${ }^{4}$

Methyl ($3 R^{*}, 6 S^{*}$)-1-benzyl-6-methylpiperidine-3-carboxylate cis-5c and methyl ($3 R^{*}, 6 R^{*}$)-1-benzyl-6-methylpiperidine-3-carboxylate trans-5c

$\operatorname{BnBr}(0.24 \mathrm{~mL}, 1.99 \mathrm{mmol}, 1.2$ eq.) was added dropwise to a stirred solution of an $85: 15$ mixture of piperidines cis- $4 \mathbf{c}$ and trans- $4 \mathbf{c}$ ($260 \mathrm{mg}, 1.66 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in saturated $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}(2 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at rt under Ar. The resulting solution was stirred at rt for 16 h . The two layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were
dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product as a colourless oil. Purification by flash column chromatography on silica with 90:10 hexane-EtOAc as eluent gave N benzyl piperidine cis-5c ($325 \mathrm{mg}, 79 \%$) as a colourless oil, R_{F} (90:10 hexane-EtOAc) 0.1; IR (ATR) 2947, 1732 (C=O), 1434, 1192, 1149, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph})$, $7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 3.78(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}), 3.62(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.37(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$, NCHPh), 2.83 (dd, $J=11.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.74-2.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHMe}), 2.57-2.49(\mathrm{~m}, 1 \mathrm{H}$, CHCO_{2}), $2.44(\mathrm{dd}, J=11.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 1.92-1.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.74-1.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.57$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 1.06(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 174.9(\mathrm{C}=\mathrm{O}), 139.8$ (ipso- Ph), $128.8(\mathrm{Ph}), 128.2(\mathrm{Ph}), 126.9(\mathrm{Ph}), 58.7\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 53.9(\mathrm{NCHMe}), 51.5(\mathrm{OMe}), 50.1$ $\left(\mathrm{NCH}_{2}\right), 41.3\left(\mathrm{CHCO}_{2}\right)$, $31.1\left(\mathrm{CH}_{2}\right)$, $23.4\left(\mathrm{CH}_{2}\right)$, $14.2(\mathrm{CHMe})$; HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}(\mathrm{M}+$ $\mathrm{H})^{+} 248.1645$, found 248.1636 (+4.1 ppm error).

Lab Book - PJ-06-23

Using general procedure C , N-benzyl piperidine cis- $5 \mathbf{c}(150 \mathrm{mg}, 0.61 \mathrm{mmol}, 1.0$ eq. $)$ and. $\mathrm{KO} t \mathrm{Bu}(0.73$ mL of a 1 M solution in THF, $0.73 \mathrm{mmol}, 1.2 \mathrm{eq}$.) in THF (5 mL) gave a $75: 25$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of N-benzyl piperidines trans-5c and cis-5c. Purification by flash column chromatography on silica with 90:10 hexane-EtOAc as eluent gave an 85:15 mixture of N-benzyl piperidine cis-5c and trans-5c (43 mg, 28\%) as a colourless oil and N-benzyl piperidine trans-5c (80 $\mathrm{mg}, 53 \%$) as a colourless oil, $R_{\mathrm{F}}(80: 20$ hexane-EtOAc) 0.18 ; IR (ATR) 2947, $1732(\mathrm{C}=\mathrm{O}), 1329,1144$, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.05(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}), 3.58(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.16(\mathrm{~d}$, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}$), $2.98(\mathrm{dd}, J=11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.49$ (dddd, $J=11.5,11.5,3.5,3.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2}$), 2.28-2.19 (m, 1H, NCHMe), $2.04(\mathrm{dd}, J=11.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 1.99-1.92(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 1.74-1.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.501 .31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.18(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.0(\mathrm{C}=\mathrm{O})$, 139.2 (ipso- Ph), 129.1 (Ph), 128.3 (Ph), 126.9 (Ph), 57.9 $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 56.4(\mathrm{NCHMe}), 54.1\left(\mathrm{NCH}_{2}\right), 51.6\left(\mathrm{CHCO}_{2}\right), 42.2(\mathrm{OMe}), 34.0\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 20.7$ (CHMe); HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 248.1645$, found 248.1638 (+2.3 ppm error).

Lab Book - PJ-06-25

Methyl (2R*, $6 R^{*}$)-6-methylpiperidine-2-carboxylate cis-4d

Using general procedure $\mathrm{B}, \mathrm{PtO}_{2}(30 \mathrm{mg}, 0.13 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and methyl 6-methylpyridine-2carboxylate ($0.18 \mathrm{~mL}, 1.32 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{AcOH}(4.9 \mathrm{~mL})$ gave the crude product which contained (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) only piperidine cis-4d ($200 \mathrm{mg}, 97 \%$) as a colourless oil. IR (ATR) 2929, 1737 ($\mathrm{C}=\mathrm{O}$), 1436, 1212, 1056, $735 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.68$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.34 (dd, $\left.J=11.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}_{2}\right), 2.62(\mathrm{dqd}, J=12.5,6.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHMe}), 1.99-1.92(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}), 1.88-1.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.62-1.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.45-1.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.08(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, CHMe), 1.06-0.96 (m, $1 \mathrm{H}, \mathrm{CH}$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8(\mathrm{C}=\mathrm{O}), 59.4(\mathrm{NCH}), 52.0$ (OMe), $51.9(\mathrm{NCHMe}), 33.8\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 22.9(\mathrm{CHMe})$; HRMS m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$158.1176, found 158.1174 (+1.3 ppm error).

Lab Book - PJ-05-88
The relative stereochemistry of cis-4d has been proven unambiguously in our previous work. ${ }^{2}$

Methyl ($2 R^{*}, 6 R^{*}$)-1-benzyl-6-methylpiperidine-2-carboxylate cis-5d

$\mathrm{BnBr}(0.23 \mathrm{~mL}, 1.91 \mathrm{mmol}, 3.0$ eq.) was added dropwise to a stirred solution of a $>95: 5$ mixture of piperidines cis-4d and trans-4d ($100 \mathrm{mg}, 0.64 \mathrm{mmol}, 1.0$ eq.) in saturated $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}(2 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at rt under Ar. The resulting solution was stirred at rt for 16 h . The two layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product as a colourless oil. Purification by flash column chromatography on silica with 80:20 hexane-EtOAc as eluent gave N benzyl piperidine cis-5d (139 mg, 88\%) as a yellow oil, R_{F} ($95: 5$ hexane-EtOAc) 0.04; IR (ATR) 2932, 1747 ($\mathrm{C}=\mathrm{O}$), 1453, 1163, 729, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.27(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.24-$ $7.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 3.84(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}), 3.73(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}), 3.60(\mathrm{~s}, 3 \mathrm{H}$,

OMe), 3.17 (dd, $J=10.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2}$), $2.41(\mathrm{dqd}, J=13.0,6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Me}), 1.85-1.78$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 1.76-1.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.64-1.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.46-1.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.29(\mathrm{dddd}, J=$ 13.0, 8.0, 2.0, 2.0 Hz, 1H, CH), $1.14(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $174.9(\mathrm{C}=\mathrm{O})$, 138.5 (ipso- Ph), $129.2(\mathrm{Ph}), 128.1(\mathrm{Ph}), 126.9(\mathrm{Ph}), 66.0\left(\mathrm{NCHCO}_{2}\right), 56.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 55.7$ (NCHMe), $51.8(\mathrm{OMe}), 34.2\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 21.4(\mathrm{CHMe})$; HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$248.1645, found 248.1648 (-1.5 ppm error).

Lab Book - PJ-05-91

The stereochemistry of cis- $\mathbf{5 d}$ was established through analysis of the coupling constants from the ${ }^{1} \mathrm{H}$ NMR spectrum. Proton at C-2 has ${ }^{3} J_{\mathrm{HH}}$ coupling constant of 10.5 Hz and the proton at the C-6 has ${ }^{3} J_{\mathrm{HH}}$ coupling constant of 13.0 Hz which suggests that the protons at the C-2 and C-6 position are axial and therefore confirms the cis relative stereochemistry.

Methyl 5-methylpyridine-2-carboxylate 3e

$3 e$
Using general procedure A, thionyl chloride ($1.03 \mathrm{~mL}, 14.2 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and 5-methylpyridine-2carboxylic acid ($973 \mathrm{mg}, 7.10 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{MeOH}(20 \mathrm{~mL})$ gave pyridine $\mathbf{3 e}(771 \mathrm{mg}, 72 \%)$ as a white solid; $\mathrm{mp} 56-57^{\circ} \mathrm{C}$ (lit., ${ }^{5} \mathrm{mp} 54-55^{\circ} \mathrm{C}$); IR (ATR) 1725 (C=O), 1318, 1287, 1250, 1124, 779, $702,644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, $7.63(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.41(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArMe}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.8\left(\mathrm{CO}_{2} \mathrm{Me}\right), 150.3$ (Ar), 145.3 (ipso-Ar), 137.4 (ipso-Ar), 137.3 (Ar), 124.8 (Ar), 52.8 $\left(\mathrm{CO}_{2} \mathrm{Me}\right), 18.6(\mathrm{ArMe})$; HRMS m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 152.0706$, found $152.0705(+0.8 \mathrm{ppm}$ error). Spectroscopic data consistent with those reported in the literature. ${ }^{5}$

Lab Book - JDF_B_170

Methyl ($2 R^{*}, 5 R^{*}$)-1-benzyl-5-methylpiperidine-2-carboxylate cis-5e and methyl ($2 R^{*}, 5 S^{*}$)-1-benzyl-5-methylpiperidine-2-carboxylate trans-5e

PtO_{2} ($83 \mathrm{mg}, 0.37 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was added to a stirred solution of ester $\mathbf{3 e}(552 \mathrm{mg}, 3.65 \mathrm{mmol}, 1.0$ eq.) in glacial acetic acid (10 mL). The reaction flask evacuated under reduced pressure and back filled with Ar three times. After a final evacuation, a balloon of hydrogen was added, and the reaction mixture was stirred vigorously at rt for 16 h . The mixture was filtered through Celite and washed with $\mathrm{MeOH}(30 \mathrm{~mL})$, and the filtrate was evaporated under reduced pressure to give a $75: 25$ mixture of crude diastereomeric piperidines $\mathbf{4 e} \cdot \mathrm{AcOH}(1.14 \mathrm{~g})$. Crude $\mathbf{4 e} \cdot \mathrm{AcOH}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and sat. $\mathrm{Na}_{2} \mathrm{CO}_{3 \text { (aq.) }}(10 \mathrm{~mL})$ and benzyl bromide $(478 \mu \mathrm{~L}, 4.02 \mathrm{mmol}, 1.1$ eq.) were added. The resulting mixture was stirred at rt for 16 h . Then, water $(30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added, and the two layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure to give a 75:25 mixture of crude products. Purification by flash column chromatography on silica with $9: 1$ to $8: 2$ hexane- $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave piperidine cis-5e ($631 \mathrm{mg}, 70 \%$) as a clear oil, $R_{\mathrm{F}}\left(8: 2\right.$ hexane- $\left.\mathrm{Et}_{2} \mathrm{O}\right) 0.5$; IR (ATR) 2927, 1735 (C=O), 1453, 1193, 1154, 1136, 1004, 735, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.34-7.20(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 3.81\left(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.75\left(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.69(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OMe}$), 3.49 (dd, $J=5.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), $2.64(\mathrm{dd}, J=11.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.54(\mathrm{dd}, J=$ $11.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 2.00 (ddd, $J=13.0,7.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 1.83 (dddd, $J=13.0,13.0,5.5,3.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.72-1.52(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}), 1.12-0.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 0.84(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 174.0\left(\mathrm{CO}_{2} \mathrm{Me}\right.$), 139.5 (ipso- Ph), 128.5 (Ar), 128.2 (Ar), 126.8 (Ar), 60.0 $(\mathrm{NCH}), 59.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 54.8\left(\mathrm{NCH}_{2}\right), 50.9\left(\mathrm{CO}_{2} \mathrm{Me}\right), 30.8(\mathrm{CH}), 29.2\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{2}\right), 19.3(\mathrm{CHMe})$; HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 248.1645$, found 248.1637 (-3.1 ppm error) and piperidine trans-5e (203 mg, 22\%) as a clear oil, $R_{\mathrm{F}}\left(8: 2\right.$ hexane- $\left.\mathrm{Et}_{2} \mathrm{O}\right) ~ 0.25$; IR (ATR) $1747(\mathrm{C}=\mathrm{O}), 1734,1274$, 1192, 1162, 1112, 738, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 3.79-3.75(\mathrm{~m}$,
$\left.4 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}+\mathrm{CH}_{2} \mathrm{Ph}\right), 3.22\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.91(\mathrm{dd}, J=11.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.82$ (ddd, $J=11.0,3.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{ddd}, J=12.5,6.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.82-1.60(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH})$, $1.56(\mathrm{dd}, J=11.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 0.98-0.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 0.79(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} M e) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 174.8\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, 137.2 (ipso- Ph), 129.5 (Ph), 128.1 (Ph), 127.1 (Ph), 66.2 $(\mathrm{NCH}), 60.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $59.1\left(\mathrm{NCH}_{2}\right), 51.9\left(\mathrm{CO}_{2} \mathrm{Me}\right), 32.0\left(\mathrm{CH}_{2}\right), 30.3(\mathrm{CH}), 29.9\left(\mathrm{CH}_{2}\right), 19.4(\mathrm{CHMe})$; HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$248.1645, found 248.1643 (-0.8 ppm error).

Lab Book - JDF_B_170 and JDF_B_174

The stereochemistry of trans-5e was established through analysis of the coupling constants from the ${ }^{1} \mathrm{H}$ NMR spectrum. Proton at C-2 has ${ }^{3} J_{\mathrm{HH}}$ coupling constants of 11.0 and 3.0 Hz and the proton at the C-5 has ${ }^{3} J_{\mathrm{HH}}$ coupling constant of 11.0 and 3.0 Hz which suggests that the protons at the C-2 and C-5 position are axial and therefore confirms the trans relative stereochemistry.

Using general procedure C , N-benzyl piperidine cis-5e ($50 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $\mathrm{KOt} \mathrm{Bu}(0.24$ mL of a 1 M solution in THF, $0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) in THF (3 mL) gave a $50: 50$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of N-benzyl piperidines trans-5e and cis-5e. Purification by flash column chromatography on silica with 90:10 hexane- $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave N-benzyl piperidine cis-5e (23 mg , 48%) as a colourless oil and N-benzyl piperidine trans-5e ($20 \mathrm{mg}, 40 \%$) as a colourless oil.

Lab Book - PJ-05-32.

Methyl $\left(2 R^{*}, 3 S^{*}\right)$-3-methylpiperidine-2-carboxylate cis-4f and methyl ($2 R^{*}, 3 R^{*}$)-3-methylpiperidine-2-carboxylate trans-4f

Using general procedure $\mathrm{B}, \mathrm{PtO}_{2}(20 \mathrm{mg}, 0.10 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and methyl-3-methylpicolinate (0.13 $\mathrm{mL}, 0.99 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in \mathrm{AcOH}(1.5 \mathrm{~mL})$ gave the crude product which contained an $85: 15$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of piperidines cis-4f and trans $-4 \mathbf{f}(150 \mathrm{mg}, 97 \%)$ as a colourless oil, IR (ATR) 2929, $1741(\mathrm{C}=\mathrm{O}), 1435,12021005,758 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.72(\mathrm{~s}, 0.45 \mathrm{H}$, $\mathrm{OMe}), 3.71(\mathrm{~s}, 2.55 \mathrm{H}, \mathrm{OMe}), 3.52\left(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 0.85 \mathrm{H}, \mathrm{NCHCO}_{2}\right), 3.16-3.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.96(\mathrm{~d}$, $\left.J=10.0 \mathrm{~Hz}, 0.15 \mathrm{H}, \mathrm{NCHCO}_{2}\right), 2.65-2.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.24-2.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}), 1.68-1.57(\mathrm{~m}, 3 \mathrm{H}$, CH), 1.39-1.32 (m, 1H, CH), 0.93 (d, $J=7.0 \mathrm{~Hz}, 2.55 \mathrm{H}, \mathrm{CHMe}$), 0.87 (d, $J=7.0 \mathrm{~Hz}, 0.45 \mathrm{H}, \mathrm{CHMe}$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for cis-4f: $\delta 173.6(\mathrm{C}=\mathrm{O}), 62.2\left(\mathrm{NCHCO}_{2}\right), 51.8(\mathrm{OMe}), 46.1\left(\mathrm{NCH}_{2}\right)$, $30.9\left(\mathrm{CH}_{2}\right), 30.6(\mathrm{CHMe}), 21.2\left(\mathrm{CH}_{2}\right), 13.6(\mathrm{CHMe})$; for trans-4f: $66.5\left(\mathrm{NCHCO}_{2}\right), 45.9\left(\mathrm{CH}_{2}\right), 34.9$ (CH), $33.1\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 19.0(\mathrm{CHMe})$; HRMS m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 158.1176$, found 158.1177 (-1.3 ppm error).

Lab Book - PJ-04-37

The relative stereochemistry of cis-4f and trans-4f has been proven unambiguously in our previous work. ${ }^{2}$

Methyl ($2 R^{*}, 3 S^{*}$)-1-benzyl-3-methylpiperidine-2-carboxylate cis-5f and methyl ($2 R^{*}, 3 \mathrm{R}^{*}$)-1-benzyl-3-methylpiperidine-2-carboxylate trans-5f

$\mathrm{PhCHO}(0.36 \mathrm{~mL}, 3.5 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) was added dropwise to a stirred solution of an 85: 15$ mixture of piperidines cis-4f and trans $\mathbf{- 4 f}(500 \mathrm{mg}, 3.18 \mathrm{mmol}, 1.0 \mathrm{eq}),. \mathrm{NaBH}(\mathrm{OAc})_{3}(1.35 \mathrm{~g}, 6.37 \mathrm{mmol}, 2.0 \mathrm{eq}$. and $\mathrm{AcOH}(0.03 \mathrm{~mL}, 0.64 \mathrm{mmol}, 0.2 \mathrm{eq}$.) in DCE $(30 \mathrm{~mL})$ at rt under Ar. The resulting mixture was
stirred at rt for 18 h . The reaction mixture was poured into sat $\mathrm{NaHCO}_{3(\mathrm{aqq})}(100 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organics were washed with brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product as a green oil which contained a 90:10 mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of piperidines cis-5f and trans-5f. Purification by flash column chromatography on silica with 98:2 hexane-EtOAc as eluent gave N-benzyl piperidine cis-5f (626 mg , 80%) as a yellow oil, R_{F} ($95: 5$ hexane-EtOAc) 0.23 ; IR (ATR) 2928, 1728 (C=O), 1453, 1148, 697 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.29(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 3.69(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, $3.61(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}), 3.56(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}), 3.45(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$, NCHCO_{2}), 3.00-2.92 (m, 1H, NCH), 2.54-2.45 (m, 1H, NCH), 2.03-1.93 (m, 1H, CHMe), 1.71-1.64 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 1.60-1.46(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $173.0(\mathrm{C}=\mathrm{O}), 139.1$ (ipso-Ph), $128.9(\mathrm{Ph}), 128.3(\mathrm{Ph}), 127.1(\mathrm{Ph}), 66.2\left(\mathrm{NCHCO}_{2}\right), 60.2\left(\mathrm{NCH}_{2} \mathrm{Ph}\right)$, $50.5(\mathrm{OMe}), 47.0\left(\mathrm{NCH}_{2}\right), 33.2(\mathrm{CHMe}), 27.8\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 18.2(\mathrm{CHMe})$; HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 248.1645$, found $248.1643(-0.7 \mathrm{ppm}$ error) and piperidine trans-5f(82 $\mathrm{mg}, 10 \%)$ as a yellow oil, $R_{\mathrm{F}}\left(95: 5\right.$ hexane-EtOAc) 0.1 ; IR (ATR) 2928, 1727 (C=O), 1453, 1147, 734, $697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.32-7.29 (m, 4H, Ph), 7.26-7.22 (m, 1H, Ph), 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.71 $(\mathrm{d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}), 3.25(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}), 2.87(\mathrm{ddd}, J=11.0,5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCH}), 2.64\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}_{2}\right), 1.95-1.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.76-1.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.61-1.53$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}), 1.05-0.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $174.3(\mathrm{C}=\mathrm{O}), 137.7$ (ipso-Ph), $129.6(\mathrm{Ph}), 128.3(\mathrm{Ph}), 127.2(\mathrm{Ph}), 73.7\left(\mathrm{NCHCO}_{2}\right), 61.2\left(\mathrm{NCH}_{2} \mathrm{Ph}\right)$, $51.8(\mathrm{OMe}), 51.3\left(\mathrm{NCH}_{2}\right), 34.4(\mathrm{CHMe}), 32.0\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 18.9(\mathrm{CHMe})$; MS (ESI) m/z $248(\mathrm{M}$ $+\mathrm{H})^{+}$; HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$248.1645, found 248.1641 (+1.3 ppm error). Spectroscopic data consistent with those reported in the literature. ${ }^{6}$

Lab Book - PJ-02-45.

Using general procedure C , N-benzyl piperidine cis- $\mathbf{5 f}$ ($173 \mathrm{mg}, 0.70 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $\mathrm{KO} t \mathrm{Bu}(0.84$ mL of a 1 M solution in THF, $0.84 \mathrm{mmol}, 1.2 \mathrm{eq}$.) in THF (5 mL) gave a $70: 30$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of N-benzyl piperidines trans-5f and cis-5f. Purification by flash column chromatography on silica with 95:5 hexane-EtOAc as eluent gave N-benzyl piperidine cis-5f (40 mg , 23%) as a colourless oil and N-benzyl piperidine trans-5f (104 mg, 60\%) as a colourless oil.

Lab Book - PJ-06-08.

Methyl 4-methylpyridine-2-carboxylate 3g

4-Methylpyridine-2-carbonitrile $\mathbf{S} 2\left(1.18 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0\right.$ eq.) was suspended in $6 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ and the resulting solution was stirred and heated at reflux for 16 h . After cooling to rt , the solvent was evaporated under reduced pressure. Then, $\mathrm{MeCN}(20 \mathrm{~mL})$ was added to the residue and the resulting white solid was collected by filtration, washed with $\mathrm{MeCN}(30 \mathrm{~mL})$ and dried under reduced pressure to give crude carboxylic acid $\mathbf{S 3} \cdot \mathbf{H C l}(1.84 \mathrm{~g})$ as a white solid containing $\sim 5 \% \mathbf{S 2}$. Using general procedure A, thionyl chloride ($1.45 \mathrm{~mL}, 20.0 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and crude $\mathbf{S 3} \cdot \mathrm{HCl}(1.84 \mathrm{~g}, 10.0 \mathrm{mmol}$ max., 1.0 eq.) in $\mathrm{MeOH}(20 \mathrm{~mL})$ gave pyridine $\mathbf{3 g}(980 \mathrm{mg}, 65 \%)$ as a clear oil; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.28(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 3.98(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 2.42(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArMe}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9\left(\mathrm{CO}_{2} \mathrm{Me}\right), 149.5$ (Ar), 148.5 (ipsoAr), 147.7 (ipso-Ar), 127.7 (Ar), 126.0 (Ar), $52.82\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, 21.0 (ArMe); HRMS m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$152.0706, found 152.0707 (-0.9 ppm error). Spectroscopic data consistent with those reported in the literature. ${ }^{7}$

Lab Book - JDF_B_143

1-tert-Butyl 2-methyl ($2 R^{*}, 4 S^{*}$)-4-methylpiperidine-1,2-dicarboxylate cis-5g

$\mathrm{PtO}_{2}(68 \mathrm{mg}, 0.2 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ was added to a stirred solution of ester $\mathbf{3 g}(453 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.0$ eq.) in glacial acetic acid (10 mL). The reaction flask evacuated under reduced pressure and back filled with Ar three times. After a final evacuation, a balloon of hydrogen was added, and the reaction
mixture was stirred vigorously at rt for 16 h . The mixture was filtered through Celite and washed with $\mathrm{MeOH}(20 \mathrm{~mL})$ and the filtrate was evaporated under reduced pressure to give crude piperidine cis$\mathbf{4 g} \cdot \mathrm{AcOH}$ as a single diastereomer. cis $-\mathbf{4 g} \cdot \mathrm{AcOH}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(2.09 \mathrm{ml}, 15.0$ mmol, 5.0 eq.) and $\mathrm{Boc}_{2} \mathrm{O}(785 \mathrm{mg}, 3.6 \mathrm{mmol}, 1.2$ eq.) were added. The resulting mixture was stirred at rt for 16 h . Then, water $(20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added, and the two layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with 9:1 hexane-EtOAc as eluent gave piperidine cis-5g (657 $\mathrm{mg}, 85 \%$) as a clear oil, $R_{\mathrm{F}}(9: 1$ hexane-EtOAc) 0.17 ; IR (ATR) 1745 ($\mathrm{C}=\mathrm{O}$, ester), 1695 ($\mathrm{C}=\mathrm{O}, \mathrm{Boc}$), 1393, 1366, 1198, 1154, 1130, $1070 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.33$ (br t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$, NCH), 3.72 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.53 (br s, $1 \mathrm{H}, \mathrm{NCH}$), 3.43-3.34 (br m, $1 \mathrm{H}, \mathrm{NCH}$), 2.01-1.92 (m, 1 H , $\mathrm{CH}), 1.89-1.68(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.37-1.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4\left(\mathrm{CO}_{2} \mathrm{Me}\right), 80.1\left(\mathrm{CMe}_{3}\right), 54.2(\mathrm{NCH}), 52.0\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $39.0\left(\mathrm{NCH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 30.9(\mathrm{CH} 2), 28.3\left(\mathrm{CMe}_{3}\right), 26.1(\mathrm{CH}), 19.0(\mathrm{CHMe})$; HRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 280.1519$, found $280.1520(-0.1 \mathrm{ppm}$ error $)$. Spectroscopic data consistent with those reported in the literature. ${ }^{8}$

Lab Book - JDF_B_146
The relative stereochemistry of cis-5g was established through comparison to literature data. ${ }^{8}$

1-tert-Butyl 2-methyl ($2 R^{*}, 4 R^{*}$)-4-methylpiperidine-1,2-dicarboxylate trans-5g

trans-5g
$n-\mathrm{BuLi}(155 \mu \mathrm{~L}$ of a 2.5 M solution in hexanes, $0.39 \mathrm{mmol}, 2.0 \mathrm{eq}$.$) was added dropwise to a stirred$ solution of diisopropylamine ($55 \mu \mathrm{~L}, 0.39 \mathrm{mmol}, 2.0 \mathrm{eq}$.) in THF (30 mL) at $-78{ }^{\circ} \mathrm{C}$ under N_{2}. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 15 min , then warmed to $0^{\circ} \mathrm{C}$ and stirred at $0^{\circ} \mathrm{C}$ for 30 min . The solution was cooled to $-78^{\circ} \mathrm{C}$ and a solution of ester cis- $5 \mathrm{~g}(50 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (2 mL) was added dropwise. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 2 h , then sat. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(5$ mL) was added, and the resulting mixture warmed to rt. Water (5 mL) and EtOAc (10 mL) were added
and the two layers were separated. The aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure to give a 80:20 mixture of trans-5g and cis-5g. Purification by flash column chromatography on silica with 9:1 hexane-EtOAc as eluent gave piperidine trans-5g ($33 \mathrm{mg}, 65 \%$) as a clear oil, R_{F} ($9: 1$ hexane-EtOAc) 0.24; IR (ATR) 2929, 2873, 1972, 1745 (C=O, Ester), 1695 (C=O, Boc), 1393, 1365, 1198, 1178, $1158,1142 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ($50: 50$ mixture of rotamers) $\delta 4.92(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 0.5 \mathrm{H}$, $\mathrm{NCH}), 4.73(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCH}), 4.03(\mathrm{dd}, J=13.5,3.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCH}), 3.92(\mathrm{dd}, J=13.5,3.0$ $\mathrm{Hz}, 0.5 \mathrm{H}, \mathrm{NCH}), 3.72\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.71\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.98(\mathrm{td}, J=13.5,3.0 \mathrm{~Hz}, 0.5 \mathrm{H}$, NCH), 2.87 ($\mathrm{td}, J=13.5,3.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCH}), 2.20-2.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.66-1.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.46(\mathrm{~s}$, $4.5 \mathrm{H}, \mathrm{CMe} 3$), $1.42\left(\mathrm{~s}, 4.5 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.40-1.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.14-0.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 0.91(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH} M e) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of rotamers) $\delta 172.7\left(\mathrm{CO}_{2} \mathrm{Me}\right), 172.4$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right), 155.9\left(\mathrm{CO}_{2} \mathrm{CMe}_{3}\right), 155.5\left(\mathrm{CO}_{2} \mathrm{CMe}_{3}\right), 80.0\left(\mathrm{CMe}_{3}\right), 55.0(\mathrm{NCH}), 53.9(\mathrm{NCH}), 52.0$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right), 41.9\left(\mathrm{NCH}_{2}\right), 41.1\left(\mathrm{NCH}_{2}\right), 34.9\left(\mathrm{CH}_{2}\right), 34.8\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CMe}_{3}\right)$, $28.3\left(\mathrm{CMe}_{3}\right), 27.5(\mathrm{CH}), 27.3(\mathrm{CH}), 21.9(\mathrm{CHMe}) ; \mathrm{HRMS} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$ 280.1519, found 280.1522 (-0.8 ppm error). Spectroscopic data consistent with those reported in the literature. ${ }^{9}$

Lab Book - JDF_B_157

Methyl 3-methylpyridine-4-carboxylate 3h

3h
Using general procedure A, thionyl chloride ($0.23 \mathrm{~mL}, 3.16 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) and 3-methyl-isonicotinic$ acid ($393 \mathrm{mg}, 2.87 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{MeOH}(20 \mathrm{~mL})$ gave pyridine $\mathbf{3 h}(345 \mathrm{mg}, 80 \%)$ as an orange oil, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 8.66-8.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.77(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 3.94(\mathrm{~s}, 3 \mathrm{H}$, OMe), $2.56(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 167.6(\mathrm{C}=\mathrm{O}), 153.2$ (Ar), 148.3 (Ar), 138.9 (ipso-Ar), 135.3 (ipso-Ar), 124.7 (Ar), 53.0 (OMe), 18.1 (Me). Spectroscopic data consistent with those reported in the literature. ${ }^{10}$

Methyl $\quad\left(3 R^{*}, 4 R^{*}\right)$-3-methylpiperidine-4-carboxylate cis-4h and methyl ($3 R^{*}, 4 S^{*}$)-3-methylpiperidine-4-carboxylate trans-4h

cis-4h

trans-4h

Using general procedure $\mathrm{B}, \mathrm{PtO}_{2}(24 \mathrm{mg}, 0.11 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and pyridine $3 \mathrm{~h}(163 \mathrm{mg}, 1.1 \mathrm{mmol}$, 1.0 eq.) in $\mathrm{AcOH}\left(2 \mathrm{~mL}\right.$) gave the crude product which contained an $85: 15$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of piperidines cis-4h and trans-4h (147 mg, 89\%) as a colourless oil, IR (ATR) 3319 (NH), 2951, 1726 (C=O), 1434, 1269, $1171 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.66$ (s, 3H, OMe), 3.07 (ddd, $J=12.5,4.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 2.89-2.76 (m, 2H, NCH, CHCO_{2}), 2.64-2.56 (m, 2H, NCH), 2.26-2.19 ($\mathrm{m}, 0.15 \mathrm{H}, \mathrm{CHMe}$), 2.14-2.06 ($\mathrm{m}, 0.85 \mathrm{H}, \mathrm{C} H \mathrm{Me}$), 1.79 (dddd, $J=14.5,10.5,10.5$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.65-1.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 0.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2.55 \mathrm{H}, \mathrm{CH} M e), 0.82$ (d, $J=7.5 \mathrm{~Hz}, 0.45 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.1(\mathrm{C}=\mathrm{O}), 52.0\left(\mathrm{NCH}_{2}\right), 51.5$ (OMe), $45.4\left(\mathrm{NCH}_{2}\right), 44.7\left(\mathrm{CHCO}_{2}\right), 31.3(\mathrm{CHMe}), 24.5\left(\mathrm{CH}_{2}\right), 13.8(\mathrm{CHMe})$; HRMS m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$158.1176, found 158.1178 (-1.3 ppm error).

Lab Book- PJ-05-09

The relative stereochemistry of cis-4h and trans $\mathbf{- 4 h}$ has been proven unambiguously in our previous work. ${ }^{2}$

1-tert-Butyl 4-methyl ($3 R^{*}, 4 R^{*}$)-3-methylpiperidine-1,4-dicarboxylate cis-5h and 1-tert-butyl 4methyl ($3 R^{*}, 4 S^{*}$)-3-methylpiperidine-1,4-dicarboxylate trans-5h

cis-5h

trans-5h
$\mathrm{Et}_{3} \mathrm{~N}(0.16 \mathrm{~mL}, 1.16 \mathrm{mmol}, 2.0 \mathrm{eq}$.$) was added dropwise to a stirred solution of an 85: 15$ mixture of piperidines cis-4h and trans-4h ($91 \mathrm{mg}, 0.58 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and \mathrm{Boc}_{2} \mathrm{O}(252 \mathrm{mg}, 1.16 \mathrm{mmol}, 2.0 \mathrm{eq}$.)
in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at rt under Ar. The resulting solution was stirred at rt for 16 h . Then, the solvent was evaporated under reduced pressure to give the crude product as a green oil. Purification by flash column chromatography on silica with $99: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone as eluent gave an $65: 35$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of Boc piperidines cis-5h and trans-5h(20 mg, 14\%) as a colourless oil and Boc piperidine cis-5h (73 mg, 49\%) as a colourless oil, $R_{\mathrm{F}}\left(99: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-acetone) 0.14 ; IR (ATR) 2970, 1733 ($\mathrm{C}=\mathrm{O}, \mathrm{CO}_{2} \mathrm{Me}$), 1687 (C=O, Boc), 1425, 1161, $880 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (60:40 mixture of rotamers) $\delta 4.12-3.97(\mathrm{~m}, 0.6 \mathrm{H}, \mathrm{NCH}), 3.97-3.83(\mathrm{~m}, 0.4 \mathrm{H}, \mathrm{NCH}), 3.81-3.72(\mathrm{~m}, 1 \mathrm{H}$, NCH), 3.67 ($\mathrm{s}, 1.8 \mathrm{H}, \mathrm{OMe}$), $3.67(\mathrm{~s}, 1.2 \mathrm{H}, \mathrm{OMe}), 3.09-3.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.00-2.88(\mathrm{~m}, 0.4 \mathrm{H}, \mathrm{NCH})$, 2.88-2.77 (m, 0.6H, NCH), 2.59 (ddd, $J=10.5,6.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2}$), 2.18 (br m, 1H, CHMe), $1.89-1.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.75-1.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.44\left(\mathrm{~s}, 5.4 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.43\left(\mathrm{~s}, 3.6 \mathrm{H}, \mathrm{CMe}_{3}\right), 0.88(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1.8 \mathrm{H}, \mathrm{CHMe}$), $0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1.2 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100.6} \mathrm{MHz}, \mathrm{CDCl}_{3}$) (rotamers) δ $174.4\left(\mathrm{C}=\mathrm{O}, \mathrm{CO}_{2} \mathrm{Me}\right), 155.3(\mathrm{C}=\mathrm{O}, \mathrm{Boc}), 79.6\left(\mathrm{CMe}_{3}\right), 51.7(\mathrm{OMe}), 49.6\left(\mathrm{NCH}_{2}\right), 48.3\left(\mathrm{NCH}_{2}\right), 44.7$ $\left(\mathrm{CHCO}_{2}\right), 43.0\left(\mathrm{NCH}_{2}\right), 42.3\left(\mathrm{NCH}_{2}\right), 31.3(\mathrm{CHMe}), 28.5\left(\mathrm{CMe}_{3}\right), 23.4\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 13.2$ (CHMe); HRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 280.1519$, found 280.1517 (+0.6 ppm error).

Lab Book - PJ-05-21
$\mathrm{Et}_{3} \mathrm{~N}(0.16 \mathrm{~mL}, 1.16 \mathrm{mmol}, 2.0$ eq.) was added dropwise to a stirred solution of an $85: 15$ mixture of piperidines cis-5h and trans-5h ($91 \mathrm{mg}, 0.58 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and \mathrm{Boc}_{2} \mathrm{O}(253 \mathrm{mg}, 1.16 \mathrm{mmol}, 2.0 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at rt under Ar. The reaction mixture was stirred at rt for 16 h . Then, the solvent was evaporated under reduced pressure to give the crude product as a green oil. Purification by flash column chromatography on silica with 90:10 hexane- $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave a $90: 10$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of N-Boc piperidines cis- $\mathbf{5 h}$ and trans- $\mathbf{5 h}$ ($117 \mathrm{mg}, 78 \%$) as a colourless oil.

Lab Book - PJ-04-100

Using general procedure C , a 90:10 mixture of N-Boc piperidines cis-5h and trans-5h ($50 \mathrm{mg}, 0.19$ mmol, 1.0 eq.) and KOtBu (0.23 mL of a 1 M solution in THF, $0.23 \mathrm{mmol}, 1.2$ eq.) in THF (5 mL) gave a 90:10 mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of Boc piperidine trans- $\mathbf{5 h}$ and cis- $\mathbf{5 h}$ ($45 \mathrm{mg}, 0.17$ $\mathrm{mmol}, 90 \%$) as a colourless oil, $R_{\mathrm{F}}\left(90: 10\right.$ hexane-EtOAc) 0.14 ; IR (ATR) 2931, 1735 ($\mathrm{C}=\mathrm{O}, \mathrm{CO}_{2} \mathrm{Me}$), 1689 ($\mathrm{C}=\mathrm{O}$, Boc), $1420,1158,767 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for trans-5h; $\delta 4.17-3.92$ (m, $2 \mathrm{H}, \mathrm{NCH}), 3.68(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.73-2.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.41-2.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.08(\mathrm{ddd}, J=12.0$,
$11.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2}$), 1.87-1.75 (m, $2 \mathrm{H}, \mathrm{CH}$ and CHMe), 1.69-1.57 (dddd, $J=12.5,12.5,12.5$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 0.87(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for trans-5h; $\delta 175.3\left(\mathrm{C}=\mathrm{O}, \mathrm{CO}_{2} \mathrm{Me}\right), 154.7(\mathrm{C}=\mathrm{O}, \mathrm{Boc}), 79.8\left(\mathrm{CMe}_{3}\right), 51.8(\mathrm{OMe}), 50.0\left(\mathrm{NCH}_{2}\right), 49.5$ $\left(\mathrm{CHCO}_{2}\right), 43.2\left(\mathrm{NCH}_{2}\right), 33.1(\mathrm{CHMe}), 28.8\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CMe}_{3}\right), 17.1(\mathrm{CHMe})$; HRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 280.1519$, found 280.1523 (-1.7 ppm error).

Lab Book - PJ-05-17

Methyl $\quad\left(3 R^{*}, 4 R^{*}\right)$-4-methylpiperidine-3-carboxylate cis-4i and methyl ($3 R^{*}, 4 S^{*}$)-4-methylpiperidine-3-carboxylate trans-4i

cis-4i

trans-4i

Using general procedure $\mathrm{B}, \mathrm{PtO}_{2}(45 \mathrm{mg}, 0.20 \mathrm{mmol}, 30 \mathrm{~mol} \%)$ and methyl-4-methylnicotinate (100 $\mathrm{mg}, 0.66 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{AcOH}(1 \mathrm{~mL})$ gave the crude product which contained a $65: 35$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of piperidines cis-4i and trans-4i (93 mg, 90\%) as a yellow oil, IR (ATR) 3314 (NH), 2952, $1726(\mathrm{C}=\mathrm{O}), 1435,1197,1139,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.66(\mathrm{~s}, 3 \mathrm{H}$, OMe), 3.20-3.10 (m, 1H, NCH), 3.07-2.96 (m, 1H, NCH), 2.86-2.79 (m, 0.65H, NCH), 2.69-2.57 (m, $1.65 \mathrm{H}, \mathrm{CH}$), 2.55-2.50 (m, 0.65H, CH), $2.15(\mathrm{br} \mathrm{m}, 1 \mathrm{H}, \mathrm{NH}), 2.12-2.04(\mathrm{~m}, 0.35 \mathrm{H}, \mathrm{CH}), 2.04-1.93(\mathrm{~m}$, $0.65 \mathrm{H}, \mathrm{CH}), 1.83-1.72(\mathrm{~m}, 0.35 \mathrm{H}, \mathrm{CH}), 1.66(\mathrm{dddd}, J=7.0,7.0,5.0,2.0, \mathrm{~Hz}, 0.35 \mathrm{H}, \mathrm{CH}), 1.59-1.46$ (m, 1H, CH), 1.16-1.03 (m, 0.35H, CH), $0.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1.95 \mathrm{H}, \mathrm{CHMe}), 0.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $1.05 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.9(\mathrm{C}=\mathrm{O}), 174.7(\mathrm{C}=\mathrm{O}), 51.6(\mathrm{OMe}), 51.3(\mathrm{OMe})$, $49.1\left(\mathrm{NCH}_{2}\right), 46.6\left(\mathrm{NCH}_{2}\right), 46.3\left(\mathrm{NCH}_{2}\right), 45.4\left(\mathrm{NCH}_{2}\right), 44.7\left(\mathrm{CHCO}_{2}\right), 34.4\left(\mathrm{CH}_{2}\right), 33.4(\mathrm{CHMe}), 31.5$ (CHMe), $31.2\left(\mathrm{CH}_{2}\right), 20.6(\mathrm{CHMe}), 18.2(\mathrm{CHMe})$; HRMS m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$ 158.11776, found 158.1173 (+1.9 ppm error).

Lab Book - PJ-04-43

1-tert-Butyl 3-methyl 4-methylpiperidine-1,3-dicarboxylate cis-5i and trans-5i

$\mathrm{Et}_{3} \mathrm{~N}(0.14 \mathrm{~mL}, 0.98 \mathrm{mmol}, 2.0 \mathrm{eq}$.$) was added dropwise to a stirred solution of a 65: 35$ mixture of piperidines cis-4i and trans-4i ($77 \mathrm{mg}, 0.49 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $\mathrm{Boc}_{2} \mathrm{O}(214 \mathrm{mg}, 0.98 \mathrm{mmol}, 2.0 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at rt under Ar. The reaction mixture was stirred at rt for 16 h . Then, the solvent was evaporated under reduced pressure to give the crude product as an orange oil. Purification by flash column chromatography on silica with 9:1 hexane-EtOAc as eluent gave Boc piperidine trans-5i (28 $\mathrm{mg}, 22 \%$) as a colourless oil, a 65:35 mixture of Boc piperidines cis-5i and trans-5i ($22 \mathrm{mg}, 18 \%$) and a 90:10 mixture of Boc piperidines cis-5i and trans-5i ($67 \mathrm{mg}, 54 \%$). The $65: 35$ and $90: 10$ mixtures of Boc piperidines cis-5i and trans-5i were combined and purified by flash column chromatography on silica with $98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone as eluent to give a $65: 35$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of Boc piperidines cis-5i and trans-5i (18 mg, 14\%) as a colourless oil and Boc piperidine cis-5i (59 mg, 47\%) as a colourless oil, $R_{\mathrm{F}}\left(99: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-acetone) 0.18 ; IR (ATR) $2971,1734\left(\mathrm{C}=\mathrm{O}, \mathrm{CO}_{2} \mathrm{Me}\right), 1689(\mathrm{C}=\mathrm{O}$, Boc), 1422, 1365, 1163, 1138, $866 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.67$ (br s, $3 \mathrm{H}, \mathrm{OMe}$), 3.61$3.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}), 3.47-3.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.40-3.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.60-2.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right)$, 2.19-2.10 (m, 1H, CHMe), 1.72-1.64 (m, 1H, CH), 1.61-1.54 (m, 1H, CH), $1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 0.97(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2\left(\mathrm{C}=\mathrm{O}, \mathrm{CO}_{2} \mathrm{Me}\right), 154.5(\mathrm{C}=\mathrm{O}, \mathrm{Boc})$, $79.6\left(\mathrm{CMe}_{3}\right), 51.6(\mathrm{OMe}), 44.7\left(\mathrm{CHCO}_{2}\right), 42.9\left(\mathrm{CH}_{2}\right), 40.5\left(\mathrm{CH}_{2}\right), 30.5(\mathrm{CHMe}), 30.3\left(\mathrm{CH}_{2}\right), 28.5$ $\left(\mathrm{CMe}_{3}\right), 15.6(\mathrm{CHMe}) ;$ HRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$280.1519, found $280.1523(-1.5$ ppm error).

Lab Book - PJ-05-15
$\mathrm{Et}_{3} \mathrm{~N}(0.94 \mathrm{~mL}, 6.78 \mathrm{mmol}, 2.0$ eq.) was added dropwise to a stirred solution of a $65: 35$ mixture of piperidines cis-4i and trans-4i ($533 \mathrm{mg}, 3.39 \mathrm{mmol}, 1.0$ eq.) and $\mathrm{Boc}_{2} \mathrm{O}(1.5 \mathrm{~g}, 6.78 \mathrm{mmol}, 2.0 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at rt under Ar . The reaction mixture was stirred at rt for 16 h . Then, the solvent was evaporated under reduced pressure to give the crude product as an orange oil. Purification by flash
column chromatography on silica with $9: 1$ hexane-EtOAc as eluent gave a $65: 35$ mixture of Boc piperidines cis-5i and trans-5i ($740 \mathrm{mg}, 84 \%$) as a colourless oil.

Lab Book - PJ-04-71.

Using general procedure C , a $65: 35$ mixture of piperidines cis- $\mathbf{5 i}$ and trans- $5 \mathbf{i}(150 \mathrm{mg}, 0.58 \mathrm{mmol}, 1.0$ eq.) and KOt Bu (0.47 mL of a 1 M solution in THF, $0.47 \mathrm{mmol}, 1.2$ eq.) in THF (9 mL) gave the crude product as an orange oil. Purification by flash column chromatography on silica with 80:20 hexaneEtOAc as eluent gave Boc piperidine trans-5i ($68 \mathrm{mg}, 68 \%$) as a colourless oil, $R_{\mathrm{F}}\left(90: 10\right.$ hexane- $\mathrm{Et}_{2} \mathrm{O}$) 0.19; IR (ATR) 2930, 1733 (C=O, $\mathrm{CO}_{2} \mathrm{Me}$), 1692 ($\mathrm{C}=\mathrm{O}, \mathrm{Boc}$), 1419, 1241, 1145, $963 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.32-3.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}), 3.68(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.86-2.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}$ and CHCO_{2}), 2.14-2.05 (m, 1H, NCH), 1.86-1.73 (m, $1 \mathrm{H}, \mathrm{CHMe}$), 1.71-1.58 (m, $1 \mathrm{H}, \mathrm{CH}$), $1.44(\mathrm{~s}, 9 \mathrm{H}$, CMe_{3}), 1.20-1.05 (m, 1H, CH), $0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $174.1\left(\mathrm{C}=\mathrm{O}, \mathrm{CO}_{2} \mathrm{Me}\right), 154.6(\mathrm{C}=\mathrm{O}, \mathrm{Boc}), 79.9\left(\mathrm{CMe}_{3}\right), 51.7(\mathrm{OMe}), 49.8\left(\mathrm{CHCO}_{2}\right), 46.2\left(\mathrm{NCH}_{2}\right), 44.0$ $\left(\mathrm{CH}_{2}\right), 33.7(\mathrm{CHMe}), 33.0\left(\mathrm{CH}_{2}\right), 28.5(\mathrm{CMe} 3), 20.1(\mathrm{CHMe})$; HRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NNaO}_{4}(\mathrm{M}+$ $\mathrm{Na})^{+} 280.1519$, found 280.1519 (+0.3 ppm error).

Lab Book - PJ-05-26

The relative stereochemistry of cis-5i and trans-5i has been proven unambiguously in our previous work. ${ }^{2}$

Methyl 3-methylpyridine-5-carboxylate 3j

3j
Using general procedure A, thionyl chloride ($60 \mu \mathrm{~L}, 0.80 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) and methyl$ 3-methylpyridine-5-carboxylate ($100 \mathrm{mg}, 0.73 \mathrm{mmol}$, 1.0 eq .) in $\mathrm{MeOH}(5 \mathrm{~mL}$) gave pyridine $\mathbf{3 j}$ (106 $\mathrm{mg}, 96 \%$) as a white solid, $\mathrm{mp} 37-39{ }^{\circ} \mathrm{C}$; IR (ATR) 2960, $1712(\mathrm{C}=\mathrm{O}), 1574,1293,1108,766 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.03(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 8.61(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 8.13-8.09(\mathrm{~m}, 1 \mathrm{H}$,

Ar), 3.95 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $2.40(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 166.9$ (C=O), 154.3 (Ar), 148.2 (Ar), 139.1 (Ar), 135.7 (Ar), 127.5 (Ar), 52.9 (OMe), 18.2 (Me); HRMS m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$152.0706, found $152.0702(+2.7 \mathrm{ppm}$ error). Spectroscopic data consistent with those reported in the literature. ${ }^{11}$

Lab Book - PJ-04-81

Methyl $\quad\left(3 R^{*}, 5 S^{*}\right)$-5-methylpiperidine-3-carboxylate cis-4j and methyl (3 $\left.S^{*}, 5 S^{*}\right)$-5-methylpiperidine-3-carboxylate trans-4j

cis-4j

trans-4j

Using general procedure $\mathrm{B}, \mathrm{PtO}_{2}(15 \mathrm{mg}, 0.066 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and pyridine $\mathbf{3 j}$ ($100 \mathrm{mg}, 0.66 \mathrm{mmol}$, 1.0 eq.) in $\mathrm{AcOH}\left(5 \mathrm{~mL}\right.$), gave the crude product which contained a $60: 40$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of piperidines trans-4j and cis-4j ($96 \mathbf{m g}, 93 \%$) as a colourless oil, IR (ATR) 2951, 1725 $(\mathrm{C}=\mathrm{O}), 1435,1198,1177,860 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.69(\mathrm{~s}, 1.8 \mathrm{H}, \mathrm{OMe}), 3.65(\mathrm{~s}, 1.2 \mathrm{H}$, OMe), 3.30-3.23 (m, 1H, NCH), 2.97-2.90 (m, 1H, NCH), 2.73 (dd, $J=13.0,3.5 \mathrm{~Hz}, 0.6 \mathrm{H}, \mathrm{NCH})$, 2.59-2.54 (m, 1H, CHCO 2), 2.51-2.43 (m, 0.4H, NCH), $2.24(\mathrm{dd}, J=13.0,10.0 \mathrm{~Hz}, 0.6 \mathrm{H}, \mathrm{NCH}), 2.15-$ $2.04(\mathrm{~m}, 1.2 \mathrm{H}, \mathrm{NCH}, \mathrm{CH}), 1.69-1.57(\mathrm{~m}, 0.6 \mathrm{H}, \mathrm{CHMe}), 1.57-1.47(\mathrm{~m}, 0.4 \mathrm{H}, \mathrm{CHMe}), 1.39-1.30(\mathrm{~m}$, $0.6 \mathrm{H}, \mathrm{NCH}), 1.17(\mathrm{~m}, 0.4 \mathrm{H}, \mathrm{CH}), 0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1.2 \mathrm{H}, \mathrm{CHMe}), 0.84(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1.8 \mathrm{H}, \mathrm{CHMe})$; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.4(\mathrm{C}=\mathrm{O}), 174.7(\mathrm{C}=\mathrm{O}), 53.8\left(\mathrm{NCH}_{2}\right), 53.7\left(\mathrm{NCH}_{2}\right), 51.8(\mathrm{OMe})$, $51.7(\mathrm{OMe}), 48.3\left(\mathrm{CH}_{2}\right), 47.4\left(\mathrm{CH}_{2}\right), 43.4\left(\mathrm{CHCO}_{2}\right), 39.7\left(\mathrm{CHCO}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{CH}_{2}\right), 31.8$ (CHMe), 28.8 (CHMe), $19.5(\mathrm{CHMe}), 19.1(\mathrm{CHMe}) ; \mathrm{HRMS} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$ 158.1176, found 158.1171 (-1.5 ppm error).

Lab Book - PJ-05-28

Using general procedure $\mathrm{B}, 10 \% \mathrm{Pd} / \mathrm{C}(70 \mathrm{mg}, 0.07 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and pyridine $\mathbf{3 j}$ ($100 \mathrm{mg}, 0.66$ mmol, 1.0 eq.) in AcOH (5 mL), gave the crude product which contained a $70: 30$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of piperidines trans- $\mathbf{4} \mathbf{j}$ and cis $\mathbf{- 4} \mathbf{j}(94 \mathrm{mg}, 91 \%)$ as a colourless oil.

Lab Book - PJ-05-25

The relative stereochemistry of cis- $\mathbf{4} \mathbf{j}$ and trans $\mathbf{-} \mathbf{4} \mathbf{j}$ has been proven unambiguously in our previous work. ${ }^{2}$

Methyl ($3 R^{*}, 5 S^{*}$)-1-benzyl-5-methylpiperidine-3-carboxylate cis-5j and methyl ($\mathbf{3} \boldsymbol{R}^{*}, 5 R^{*}$)-1-benzyl-5-methylpiperidine-3-carboxylate trans-5j

$\operatorname{BnBr}(0.09 \mathrm{~mL}, 0.76 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added dropwise to a $70: 30$ solution of piperidine trans $-\mathbf{4 j}$ and cis- $\mathbf{4 j}$ ($100 \mathrm{mg}, 0.63 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $\mathrm{Et}_{3} \mathrm{~N}\left(0.11 \mathrm{~mL}, 0.79 \mathrm{mmol}, 1.2 \mathrm{eq}\right.$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at rt under Ar. The resulting solution was stirred at rt for 16 h . The two layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product as a colourless oil. Purification by flash column chromatography on silica with 90:10 hexane-EtOAc as eluent gave N-benzyl piperidine trans$5 \mathbf{j}(77 \mathrm{mg}, 51 \%)$ as a colourless oil, $R_{\mathrm{F}}(90: 10$ hexane-EtOAc) 0.14 ; IR (ATR) 2949, 1732 (C=O), 1453, 1199, 1150, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.28(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}$, Ph), 3.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.56 ($\mathrm{d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}$), 3.39 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}$), 2.96$2.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.69-2.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.63-2.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.31-2.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH})$, 2.06-1.94 (m, 2H, CHMe and CH), 1.91-1.83 (m, 1H, NCH), 1.24-1.14 (m, 1H, CH), $0.92(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CHMe}$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.9$ (C=O), 138.8 (ipso- Ph), 128.9 (Ph), 128.2 $(\mathrm{Ph}), 127.0(\mathrm{Ph}), 63.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 61.3\left(\mathrm{NCH}_{2}\right), 54.9\left(\mathrm{NCH}_{2}\right), 51.6(\mathrm{OMe}), 39.7\left(\mathrm{CHCO}_{2}\right), 33.4\left(\mathrm{CH}_{2}\right)$, 28.1 (CHMe), 19.2 ($\mathrm{CH} M e$); HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$248.1645, found 248.1646 (-0.9 ppm error) and N -benzyl piperidine cis- $\mathbf{5 j}$ ($27 \mathrm{mg}, 17 \%$) as a colourless oil, R_{F} ($90: 10$ hexaneEtOAc) 0.05; IR (ATR) 2951, 1732 (C=O), 1434, 1136, 1154, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.34-7.29 (m, 4H, Ph), 7.280-7.24 (m, 1H, Ph), $3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}\right.$), $3.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.12-3.06$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}), 2.84-2.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.64\left(\mathrm{dddd}, J=12.0,12.0,4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.04-$
$1.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.95(\mathrm{dd}, J=12.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 1.78-1.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}), 1.55(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}), 1.02(\mathrm{ddd}, J=12.0,12.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 0.87(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) ס 174.9 (C=O), 140.1 (ipso- Ph), 129.2 (Ph), 128.4 (Ph), 127.1 (Ph), 63.2 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 61.2\left(\mathrm{NCH}_{2}\right), 55.1\left(\mathrm{NCH}_{2}\right), 51.7(\mathrm{OMe}), 42.3\left(\mathrm{CHCO}_{2}\right), 35.9\left(\mathrm{CH}_{2}\right), 30.6(C \mathrm{HMe}), 19.5$ ($\mathrm{CH} M e$); HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 248.1645$, found 248.1647 (-1.1 ppm error).

Lab Book - PJ-06-36

Using general procedure C , piperidine trans $-\mathbf{5 j}(150 \mathrm{mg}, 0.61 \mathrm{mmol}, 1.0$ eq.) and $\mathrm{KO} t \mathrm{Bu}(0.73 \mathrm{~mL}$ of a 1 M solution in THF, $0.73 \mathrm{mmol}, 1.2 \mathrm{eq}$.) in THF (5 mL) gave a crude $85: 15$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of N-benzyl piperidines cis-5j and trans-5j (149 mg). Purification by flash column chromatography on silica with 90:10 hexane-EtOAc as eluent gave N-benzyl piperidine cis-5j (93 mg , 62%) as a yellow oil.

Lab Book - PJ-06-16

The stereochemistry of cis- $\mathbf{5 j}$ was established through analysis of the coupling constants from the ${ }^{1} \mathrm{H}$ NMR spectrum. Proton at C-4 has ${ }^{2} J_{\mathrm{HH}}$ geminal coupling constants of 12.0 Hz and ${ }^{3} J_{\mathrm{HH}}$ coupling constants of 12.0 Hz and 12.0 Hz which shows that the protons at the $\mathrm{C}-3$ and $\mathrm{C}-5$ position are axial and therefore confirms the cis relative stereochemistry.

tert-Butyl 2-methylpiperidine-1-carboxylate 7a

7a

2-Methyl piperidine ($5.0 \mathrm{~mL}, 42.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added dropwise to a stirred solution of di-tertbutyl dicarbonate ($10.2 \mathrm{~g}, 46.8 \mathrm{mmol}$, 1.1 eq .) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was allowed to warm to rt and stirred at rt for $16 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash chromatography on silica with $90: 10$ petrol- $-\mathrm{Et}_{2} \mathrm{O}$ as eluent gave N-Boc methyl piperidine $7 \mathbf{a}(7.6 \mathrm{~g}, 82 \%)$ as a colourless oil, $R_{\mathrm{F}}\left(90: 10\right.$ petrol- $\left.\mathrm{Et}_{2} \mathrm{O}\right) 0.3$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.41-4.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.90(\mathrm{dd}, J=$ $13.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 2.79 (ddd, $J=13.5,13.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 1.68-1.45 (m, 5H CH), 1.44 (s, $9 \mathrm{H}, \mathrm{CMe}_{3}$), 1.40-1.32 (m, 1H, CH), $1.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $155.0(\mathrm{C}=\mathrm{O}), 79.0\left(\mathrm{CMe}_{3}\right), 46.0(\mathrm{NCH}), 38.6\left(\mathrm{NCH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CMe}_{3}\right), 25.7\left(\mathrm{CH}_{2}\right), 18.7$ $\left(\mathrm{CH}_{2}\right), 15.7(\mathrm{Me})$. Spectroscopic data consistent with those reported in the literature. ${ }^{12}$

Lab Book - MCW/2/2

($2 R^{*}, 6 S^{*}$)-1-(tert-Butoxycarbonyl)-6-methylpiperidine-2-carboxylic acid trans-8d

trans-8d
s-BuLi (1.0 mL of a 1.3 M solution in hexane, $1.3 \mathrm{mmol}, 1.3 \mathrm{eq}$.) was added dropwise to a stirred solution of N-Boc piperidine $7 \mathbf{7 a}(199 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and TMEDA ($0.19 \mathrm{~mL}, 1.3 \mathrm{mmol}, 1.3 \mathrm{eq}$.) in $\mathrm{Et}_{2} \mathrm{O}(7 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$ under Ar. The resulting yellow solution was stirred at $-40^{\circ} \mathrm{C}$ for 1.5 h . Then, CO_{2} (excess) was bubbled through the reaction mixture at $-40^{\circ} \mathrm{C}$ for $10 \mathrm{~min} . \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. $1 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(15 \mathrm{~mL})$ was added, and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash chromatography on silica with $90: 10 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ and 0.5% acetic acid and then
$70: 30 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ and 0.5% acetic acid as eluent gave piperidine carboxylic acid trans- $\mathbf{8 d}$ (199 mg , $82 \%)$ as a white solid, $\mathrm{mp} 82-84^{\circ} \mathrm{C} ; R_{\mathrm{F}}\left(90: 10 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right) 0.2$; IR (ATR) 2977, 2944, $1698(\mathrm{C}=\mathrm{O})$, 1445, 1380, 1365, 1227, 868, 779, $512 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.24-4.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH})$, $4.18(\mathrm{dd}, J=7.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.09-1.80(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}), 1.69-1.49(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}), 1.45(\mathrm{~s}, 9 \mathrm{H}$, CMe_{3}), $1.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($101.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס $178.3\left(\mathrm{C}=\mathrm{O}, \mathrm{CO}_{2} \mathrm{Me}\right), 156.4$ $(\mathrm{C}=\mathrm{O}, \mathrm{Boc}), 80.9\left(\mathrm{CMe}_{3}\right), 53.8(\mathrm{NCH}), 47.6(\mathrm{NCH}), 28.3\left(\mathrm{CMe}_{3}\right), 27.7\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 18.8(\mathrm{Me})$, $15.0\left(\mathrm{CH}_{2}\right) ;$ HMRS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 266.1363$, found $266.1355(+2.9 \mathrm{ppm}$ error).

Lab Book Reference: MCW/3/57/2

The relative stereochemistry of cis-8d has been proven unambiguously in our previous work. ${ }^{2}$

($2 R^{*}, 6 S^{*}$)-1-tert-Butyl 2-methyl 6-methylpiperidine-1,2-dicarboxylate trans-5d

trans-5d
Potassium carbonate ($2.56 \mathrm{~g}, 18.5 \mathrm{mmol}, 3.0$ eq.) was added to a stirred solution of piperidine carboxylic acid trans- $8 \mathbf{d}(1.50 \mathrm{~g}, 61.7 \mathrm{mmol}, 1.0$ eq.) in dimethylformamide (20 mL) at rt under Ar. The resulting suspension was stirred at rt for 30 min before the addition of methyl iodide $(1.15 \mathrm{~mL}$, $18.5 \mathrm{mmol}, 3.0$ eq.). The mixture was then stirred at rt for 18 h . The solvent was evaporated under reduced pressure and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(10 \mathrm{~mL})$ were added. The mixture was extracted with $\operatorname{EtOAc}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\text { (aq) }}(15 \mathrm{~mL})$ and the mixture extracted with EtOAc (20 mL). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash chromatography on silica with 80:20 hexane- $\mathrm{Et}_{2} \mathrm{O}$ as eluent gave piperidine methyl ester trans-5d ($1.55 \mathrm{~g}, 97 \%$) as a yellow oil, $R_{\mathrm{F}}\left(80: 20\right.$ hexane- $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ 0.2; IR (ATR) 2972, 2950, 1746 ($\mathrm{C}=\mathrm{O}, \mathrm{CO}_{2} \mathrm{Me}$), 1692 ($\mathrm{C}=\mathrm{O}, \mathrm{Boc}$), $1390,1364,1163,1112,735 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.26-4.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 4.12(\mathrm{dd}, J$ $=7.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 3.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.04-1.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.91-1.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.67-1.48$ $(\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($101.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8$ $\left.\left(\mathrm{C}=\mathrm{O}, \mathrm{CO}_{2} \mathrm{Me}\right), 156.0(\mathrm{C}=\mathrm{O}, \mathrm{Boc}), 80.1\left(\mathrm{CMe}_{3}\right), 54.1(\mathrm{NCH}), 52.0(\mathrm{OMe}), 47.5(\mathrm{NCH}), 28.3(\mathrm{CMe})_{3}\right)$,
$28.0\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 18.8(\mathrm{Me}), 15.5\left(\mathrm{CH}_{2}\right)$; MS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 280\left[(\mathrm{M}+\mathrm{Na})^{+}, 100\right], 258\left[(\mathrm{M}+\mathrm{H})^{+}\right.$, 15]; HMRS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 280.1519$, found 280.1507 (+4.2 ppm error).

Lab Book Reference: mcw/3/59/1

tert-Butyl 3-methylpiperidine-1-carboxylate 7b

7b
A solution of $\mathrm{Boc}_{2} \mathrm{O}(1.3 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.2$ eq. $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise to a stirred solution of piperidine ($0.59 \mathrm{~mL}, 5.0 \mathrm{mmol}, 1.0$ eq.), and $\mathrm{Et}_{3} \mathrm{~N}\left(2.1 \mathrm{~mL}, 15.0 \mathrm{mmol}, 3.0 \mathrm{eq}\right.$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{~mL})$ at rt under Ar. The resulting solution was stirred at rt for 16 h . Then, the reaction mixture was evaporated under reduced pressure to give the crude product as a colourless oil. Purification by flash column chromatography on silica with 99:1 hexane-EtOAc as eluent gave N-Boc piperidine 7b (975 $\mathrm{mg}, 98 \%$) as a colourless oil, $R_{\mathrm{F}}(99: 1$ hexane-EtOAc) 0.1 ; $\mathrm{IR}(\mathrm{ATR}) 2959,1690(\mathrm{C}=\mathrm{O}), 1416,1149$, $1075,969 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.07-3.74$ (m, 2H, NCH), 2.68 (ddd, $J=13.0,11.5,3.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.49-2.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.80-1.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.68-1.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}$ and CHMe$)$, 1.45 (s, 9H, CMe_{3}), 1.43-1.35 (m, 1H, CH), 1.09-0.97 (m, 1H, CH), 0.86 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}$); ${ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.1(\mathrm{C}=\mathrm{O}), 79.3\left(\mathrm{CMe}_{3}\right), 51.5\left(\mathrm{NCH}_{2}\right), 50.8\left(\mathrm{NCH}_{2}\right), 44.5\left(\mathrm{NCH}_{2}\right)$, $43.8\left(\mathrm{NCH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 31.1(\mathrm{CHMe}), 28.6\left(\mathrm{CMe}_{3}\right), 25.3\left(\mathrm{CH}_{2}\right), 19.1(\mathrm{CHMe})$; HRMS m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 222.1464$, found 222.1471 (-3.8 ppm error).

Lab Book - PJ-05-79

$\left(2 R^{*}, 5 S^{*}\right)-1-[($ tert-Butoxy)carbonyl]-5-methylpiperidine-2-carboxylic acid trans-8e and $\left(2 R^{*}, 5 R^{*}\right)$-1-[(tert-butoxy)carbonyl]-5-methylpiperidine-2-carboxylic acid cis-8e

$s-\operatorname{BuLi}(1.0 \mathrm{~mL}$ of a 1.3 M solution in hexane, $1.3 \mathrm{mmol}, 1.3$ eq.) was added drop wise to a stirred solution of N-Boc piperidine $7 \mathbf{b}(199 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and TMEDA ($0.19 \mathrm{~mL}, 1.3 \mathrm{mmol}, 1.3$ eq.) in $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ at $-60^{\circ} \mathrm{C}$ under Ar . The resulting solution was stirred at $-60^{\circ} \mathrm{C}$ for 3 h . Then, CO_{2} (excess) was bubbled through the reaction mixture at $-60{ }^{\circ} \mathrm{C}$ for $10 \mathrm{~min} .1 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ was added, and the mixture extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash chromatography on silica with $99: 1$ to $98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetic acid as eluent gave a $90: 10$ mixture of piperidine carboxylic acid trans-8e and cis-8e (140 mg, 57%) as a white solid, m.p 99-101 ${ }^{\circ} \mathrm{C}$; R_{F} (95:5 $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{AcOH}\right) 0.22$; IR (ATR) 2936, $1725\left(\mathrm{C}=\mathrm{O}, \mathrm{CO}_{2} \mathrm{H}\right), 1622$ ($\left.\mathrm{C}=\mathrm{O}, \mathrm{Boc}\right), 1438,1365,1151$, $850 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) trans-8e: $\delta 11.56-10.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 4.97-4.51(\mathrm{~m}, 1 \mathrm{H}$, NCHCO_{2}), 3.69-3.45 (m, 1H, NCH), 3.18 (dd, $\left.J=13.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}\right), 1.97-1.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.92-1.82 (m, 1H, CHMe), 1.68-1.54 (m, 1H, CH), 1.53-1.34 (m, 10H, CMe ${ }_{3}$ and CH), $0.97(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 2.7 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.0\left(\mathrm{C}=\mathrm{O}, \mathrm{CO}_{2} \mathrm{H}\right), 156.5(\mathrm{C}=\mathrm{O}, \mathrm{Boc}), 80.5$ $\left(\mathrm{CMe}_{3}\right), 53.9\left(\mathrm{NCHCO}_{2}\right), 47.5\left(\mathrm{NCH}_{2}\right), 28.4(\mathrm{CMe} 3), 27.1(\mathrm{CHMe}), 27.0\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{2}\right), 16.7$ (CHMe); HRMS m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$266.1363, found 266.1367 (-3.8 ppm error). Spectroscopic data consistent with those reported in the literature. ${ }^{13}$

Lab Book - PJ-05-90

The relative stereochemistry of trans-8e was established through comparison to literature data. ${ }^{13}$

1-tert-Butyl 2-methyl ($2 R^{*}, 5 S^{*}$)-5-methylpiperidine-1,2-dicarboxylate dicarboxylate trans-S4 and 1-tert-Butyl 2-methyl ($2 R^{*}, 5 R^{*}$)-5-methylpiperidine-1,2-dicarboxylate cis-S4

Potassium carbonate ($86 \mathrm{mg}, 0.62 \mathrm{mmol}, 3.0 \mathrm{eq}$.) was added to a stirred solution of piperidine carboxylic acid trans-8e ($50 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.0$ eq.) in dimethylformamide (3 mL) at rt . The resulting suspension was stirred at rt for 30 min before the addition of methyl iodide $(0.038 \mathrm{~mL}, 0.62 \mathrm{mmol}, 3.0$ eq.). The mixture was then stirred at rt for 18 h . The reaction mixture was taken up into water (3 mL) and extracted with EtOAc $(4 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine $(4 \times 5$ $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash chromatography on silica with 90:10 hexane-EtOH as eluent gave a 90:10 mixture of piperidine ester trans-S4 and cis-S4 ($47 \mathrm{mg}, 87 \%$) as a yellow oil, R_{F} ($90: 10$, hexane-EtOH) 0.17 ; IR (ATR) 2940, 1743 ($\mathrm{C}=\mathrm{O}, \mathrm{CO}_{2} \mathrm{Me}$), $1690(\mathrm{C}=\mathrm{O}, \mathrm{Boc}), 1363,1147,864 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.86-$ $4.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCO}_{2}\right), 3.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.64-3.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.20-3.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 1.97-$ $1.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Me}), 1.59-1.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.41-1.32$ $(\mathrm{m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7\left(\mathrm{C}=\mathrm{O}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $156.3(\mathrm{C}=\mathrm{O}, \mathrm{Boc}), 80.1\left(\mathrm{CMe}_{3}\right), 54.5\left(\mathrm{NCHCO}_{2}\right), 52.2(\mathrm{OMe}), 47.3\left(\mathrm{NCH}_{2}\right), 28.4(\mathrm{CMe}), 27.2$ $(\mathrm{CHMe}), 27.1\left(\mathrm{CH}_{2}\right), 21.8\left(\mathrm{CH}_{2}\right), 16.7(\mathrm{CHMe})$; HRMS m$/ \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$ 280.1519 , found 280.1525 (-2.0 ppm error).

Lab Book - PJ-05-95

Methyl ($2 R^{*}, 5 R^{*}$)-1-benzyl-5-methylpiperidine-2-carboxylate cis-5e and methyl ($2 R^{*}, 5 S^{*}$)-1-benzyl-5-methylpiperidine-2-carboxylate trans-5e

TFA (1 mL) was added to a stirred solution of a 90:10 mixture of piperidine ester trans-S4 and cis-S4 ($47 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~mL}\right.$) at $0{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was warmed to rt and stirred for 3 h at rt , then evaporated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$ and sat $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}(2 \mathrm{~mL})$ and benzyl bromide $(0.06 \mathrm{~mL}, 0.54 \mathrm{mmol}, 3.0$ eq.) were added. The resulting mixture was stirred at rt for 16 h . The two layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product as a colourless oil. Purification by flash column chromatography on silica with 90:10 hexane-EtOAc as eluent gave N-benzyl piperidine cis-5e (4 mg , 7%) as a colourless oil and N-benzyl piperidine trans-5e ($38 \mathrm{mg}, 85 \%$) as a colourless oil.

Lab Book - PJ-05-98.

2. Isomers of dimethyl pyridine 1 and dimethyl NH piperidine 2

Piperidines

Enantiomeric pairs:

Figure S1. Isomers of dimethyl pyridine $\mathbf{1}$ and dimethyl NH piperidine 2.

3. Virtual Library Analysis

3.1. Principle Moments of Inertia and Molecular Properties

Shape analysis

3-Dimensional structures of piperidines 6a-6d were generated Pipeline Pilot 16.5.0.143, 2016, Accelrys Software Inc. Prior to conformer generation a wash step was performed, which involved stripping salts and ionising the molecule at pH 7.4 . SMILES strings were converted to their canonical representation and the original stereochemistry at each chiral centre was recorded. Any stereocentre created during the ionisation would have undefined stereochemistry. A SMILES files was written that contained all possible stereoisomers of the molecule. Conformers were generated using Catalyst with the BEST conformational analysis method and relative stereochemistry. Catalyst was run directly on the server and not through the built-in Conformation Generator component. The maximum relative energy threshold was left at the default $20 \mathrm{kcal} \mathrm{mol}^{-1}$ and a maximum of 255 conformers were generated for each compound. The aim of this was to give the best possible coverage of conformational space. The resulting conformations from Catalyst were read and only those where the stereochemistry matched the original molecule or its enantiomer were kept. These were then all standardised to the original stereochemistry by mirroring the coordinates of the enantiomers. Duplicate conformations were filtered with a RMSD threshold of 0.1. Each conformation was minimised using 200 steps of Conjugate Gradient minimisation with an RMS gradient tolerance of 0.1 . This was performed using the CHARMm forcefield with Momany-Rone partial charge estimation and a Generalised Born implicit solvent model. After minimisation, duplicates were filtered again with a RMSD threshold of 0.1 . The lowest energy conformer of each molecule was selected and the generated conformations were used to generate the three Principal Moments of Inertia (I1, I2 and I3) which were then normalised by dividing the two lower values by the largest (I1/I3 and I2/I3) using Pipeline Pilot built-in components.

3-Dimensional structures of pyridines 3 were generated using RDKIT v4.5 in KNIME v4.4.1. A maximum of 50 conformers were generated for each molecule and the geometry of each was optimised using MMFF94 force field with 1000 iterations. Prior to calculation, salts were stripped and explicit hydrogens added. The lowest energy conformer of each molecule was selected and the three Principal Moments of Inertia calculated using Vernalis PMI KNIME nodes.

Principal moments of inertia (PMI) about the principal axes of a molecule were calculated according to the following rules:

1. The moments of inertia are computed for a series of straight lines through the centre of mass.
2. Distances are established along each line proportional to the reciprocal of the square root of I on either side of the centre of mass. The locus of these distances forms an ellipsoidal surface. The principal moments are associated with the principal axes of the ellipsoid.

Molecular properties

Heavy atom count (HAC) was calculated using RDKit v3.4 in KNIME v3.5.2. Prior to calculation, salts were stripped. ClogP values were calculated using Daylight/BioByte ClogP v4.3.

3.2 Virtual Library Enumeration and Lead-Likeness Analysis

To assess the suitability of our piperidines for the generation of lead-like compounds we used the open access tool LLAMA..14,15 Using our deprotected piperidines (as amino acids) as scaffolds, LLAMA computationally decorated (once or twice) the amine and acid functionalities and analysed the resulting virtual molecules for their lead-likeness (for leading examples of lead-oriented synthesis see ${ }^{16-19}$). LLAMA generated 1599 virtual compounds from our 20 deprotected piperidines. The default set of capping groups was used, and of the standard decoration reactions, "Secondary amide alkylation" and "Secondary amide arylation" were disabled to prevent two diversification events occurring at the same diversification point of the scaffolds.

Of the 1599 virual compounds, 78% fell within lead-like space (defined as molecular weight between 200 and 350, and AlogP between -1 and 3) ${ }^{14}$ (Figure S2). For comparison, only 23% of the ZINC database of commercially available screening compounds fall within lead-like space. ${ }^{14,17}$ LLAMA also generates a lead-likeness penalty (LLP) score for each molecule (the lower the better), considering the number of aromatic rings and the presence of unwanted structural features as well as molecular weight and AlogP. Our virtual library had a mean LLP of 1.02 (cf. 4.17 for ZINC) indicating that compounds derived from di-substituted piperidines 5 would be highly lead-like. Furthermore, analysis of the degree of saturation of the virtual library showed that it had a mean Fsp ${ }^{3}$ of 0.62 , whereas the mean value for the Zinc library is only 0.33 .

Figure S2. Molecular properties of the virtual lead-like library (coloured per lead likeness penalty: 0 , green; 3 , orange; $6+$ red).

4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

| % \
| % \

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum； $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum； CDCl_{3}

$\int\{j\}$

à
\vdots
\vdots
\vdots
1

が	\＆）す	－	－	$\stackrel{\circ}{\circ}$
へべが号		ส	－	N
4	1／11	｜		

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

[^0]$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}
$\underbrace{\text { м }}_{\text {м }}$

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

80	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; $\mathrm{MeOH}-d_{4}$

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

				1	1	1	1	1						1	
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum； $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum； CDCl_{3}

$\stackrel{\infty}{\square}$	$\stackrel{\rightharpoonup}{0}$	$\rightarrow \infty$	さ○い。	\sim^{∞}	
さ	圌				
｜		\V	！ 11	\1	

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $\mathrm{CDCl}_{3} 100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; $\mathrm{MeOH}-d_{4}$

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

										1			,	1		
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

[^1]$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum; $100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum; CDCl_{3}

5. References

1 C. Agami, L. Dechoux, C. Ménard and S. Hebbe, J. Org. Chem., 2002, 67, 7573-7576.
2 P. O’Brien, T. D. Downes, S. P. Jones, H. F. Klein, M. C. Wheldon, M. Atobe, P. S. Bond, J. D. Firth, N. S. Chan, L. Waddelove, R. E. Hubbard, D. C. Blakemore, C. De Fusco, S. D. Roughley, L. R. Vidler, M. A. Whatton, A. J.-A. Woolford and G. L. Wrigley, Chem. Eur. J., 2020, 26, 8969-8975.
J. R. Medina, C. J. Becker, C. W. Blackledge, C. Duquenne, Y. Feng, S. W. Grant, D. Heerding, W. H. Li, W. H. Miller, S. P. Romeril, D. Scherzer, A. Shu, M. A. Bobko, A. R. Chadderton, M. Dumble, C. M. Gardiner, S. Gilbert, Q. Liu, S. K. Rabindran, V. Sudakin, H. Xiang, P. G. Brady, N. Campobasso, P. Ward and J. M. Axten, J. Med. Chem., 2011, 54, 1871-1895.
A. R. Renslo and R. L. Danheiser, J. Org. Chem., 1998, 63, 7840-7850.
E. Lorthiois, I. Marek and J. F. Normant, J. Org. Chem., 1998, 63, 566-574.
I. Prat, D. Font, A. Company, K. Junge, X. Ribas, M. Beller and M. Costas, Adv. Synth. Catal., 2013, 355, 947-956.

8 K. Hung, P. W. R. Harris and M. A. Brimble, J. Org. Chem., 2010, 75, 8728-8731.
C. Alegret, F. Santacana and A. Riera, J. Org. Chem., 2007, 72, 7688-7692.

10 F. Tjosås, N. M. Pettersen and A. Fiksdahl, Tetrahedron, 2007, 63, 11893-11901.
J. Guo, L. Yan and W. Jin, Heterocycl. Commun., 2015, 21, 203.
L. D. Julian and J. F. Hartwig, J. Am. Chem. Soc., 2010, 132, 13813-13822.

13 Z. Zhang, G. M. Giampa, C. Draghici, Q. Huang and M. Brewer, Org. Lett., 2013, 15, 21002103.

14 I. Colomer, C. J. Empson, P. Craven, Z. Owen, R. G. Doveston, I. Churcher, S. P. Marsden and A. Nelson, Chem. Commun., 2016, 52, 7209-7212.
https://llama.leeds.ac.uk/, (accessed June 2022).
A. Nadin, C. Hattotuwagama and I. Churcher, Angew. Chem. Int. Ed., 2012, 51, 1114-1122.
R. G. Doveston, P. Tosatti, M. Dow, D. J. Foley, H. Y. Li, A. J. Campbell, D. House, I. Churcher, S. P. Marsden and A. Nelson, Org. Biomol. Chem., 2015, 13, 859-865.
M. Lüthy, M. C. Wheldon, C. Haji-Cheteh, M. Atobe, P. S. Bond, P. O'Brien, R. E. Hubbard and I. J. S. Fairlamb, Bioorg. Med. Chem., 2015, 23, 2680-2694.

19 D. J. Foley, R. G. Doveston, I. Churcher, A. Nelson and S. P. Marsden, Chem. Commun., 2015, 51, 11174-11177.

[^0]:

[^1]: $\begin{array}{lllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array}$

