Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information (ESI)

Coiled-Coil Protein Origami Structure Modeling for Improved Characterization and Prediction

Ratnakshi Mandal,^a Mostafa Bedewy,^b and Won Min Park^{a*}

^{a.} Tim Taylor Department of Chemical Engineering, Kansas State University, 1701A Platt Street, Manhattan, Kansas 66506, USA.

^{b.} Department of Industrial Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, USA.

*Correspondence to: wmpark@ksu.edu

Triangle (a heterotrimer of SYNZIP1-SYNZIP6, SYNZIP5-SYNZIP4, and SYNZIP3-SYNZIP2)

	1	10	20	30	40	50	60	70	80	90	100
SYNZIP1-SYNZIP6	MNLVAQL	ENEVASLENE	NETLKKKNLI	HKKDLIAYLEI	KEIANLRKKI	EGGGGSGGGG	SKENAKLENI	VARLENDNANL	EKDIANLEKD	ANLERDVALE	ННННН
SYNZIP1:	-NLVAOL	ENEVASLENE	NETLKKKNLI	HKKDLIAYLE	KEIANLRKKI	E					
SYN7TP6:							-KENAKLENT	ARI ENDNANI	EKDTANI EKDI	ANI ERDVA	
STREET OF							RENARCENT	AREENDIANE	ENDIANCENDI	ANELNOVA	
	1	10	20	20	10	50	60	70	20	00	100
	1	10	20	30	40	50	60	70	80	90	100
SYNZIP5-SYNZIP4	MNTVKEL	KNYIQELEER	NAELKNLKE	HLKFAKAELEI	FELAAHKFEG	GGGSGGGGSN	RNEQLKNKVEI	ELKNRNAYLKN	IELATLENEVA	RLENDVAELEH	ннннн
SYNZIP5	-NTVKELI	KNYIQELEER	NAELKNLKE	HLKFAKAELE	FELAAHKFE-						
SYNZIP4						N	RNEQLKNKVEI	ELKNRNAYLKN	IELATLENEVAR	RLENDVAE	
	1	10	20	30	40	50	60	70	80	90	100
SYNZIP3-SYNZIP2	MNEVTTL	ENDAAFIENE	NAYLEKETA	RLRKEKAALRI	VRLAHKKGGG	GSGGGGSARN	AYLRKKTARLI	KKDNLOLERDE	ONLEKTIANLE		ALEHHHHHH
SVN7TP3	-NEVTTI	ENDAAETENE	ΝΔΥΙ ΕΚΕΤΔ	RI RKEKAAL RI	NRI AHKK						
SVNZTDO	142 4 1 1 2					ADN					(A)
STNZIPZ						ARN	ATERNIANE	KUNLQLERUE	QULEKITANL	DETAKLENEV	A
Tetrahedron (TET129	SN)										
	1	10	20	20	40	50	60	70	00	00	100
	1	10	20	30	40	50	00	70	80	90	100
TET12SN	MLEEELK	QLEEELQAIE	EQLAQLQWK	AQARKEKLAQI	LKEKLSGPGS	PEDEIQQLEE	EISQLEQKNSI	ELKEKNQELKY	GSGPGDIEQE	ERAKESIRRL	.EQ
APH: APH	-LEEELK	QLEEELQAIE	EQLAQLQWK	AQARKEKLAQI	LKEKL						
P3:P4					5	PEDEIQQLEE	EISQLEQKNS	ELKEKNQELKY	(
BCR:BCR									DIEOEL	ERAKESIRRL	EO
GCN . : GCN .											
DZ · DO											
F7.F0											
P5:P6											
	101	110	120	130	140	150	160	170	180	190	200
TET12SN	EVNQERS	RMQYLQTLLE	KSGPGQLED	KVEELLSKNYI	HLENEVERLK	KLVGSGPGLE	EELKQLEEELO	QAIEEQLAQLQ	WKAQARKEKLA	QLKEKLSGPG	iSP
APH: APH						LE	EELKQLEEELG	QAIEEQLAQLQ	WKAQARKEKLA	QLKEKL	
P3:P4											
BCR: BCR	EVNOERS	RMOYLOTLLE	К								
GCN . GCN .				KVEELI SKNVI		KI V					
			QLLD.	RVEEESKIIII							CD.
P7:P6											5P
P5:P6											
	2.04					250					200
	201	210	220	230	240	250	260	270	280	290	300
TET12SN	EDEIQQL	EEKNSQLKQE	ISQLEEKNQ	ELKYGSGPGQI	LEDKVEELLS	KNYHLENEVE	RLKKLVGSGP	GSPEDKISQLK	EKIQQLKQENQ	QLEEENSQLE	YG
APH: APH											
P3:P4								-SPEDKISQLK	EKIQQLKQEN	QLEEENSQLE	Y-
BCR:BCR											
GCN-+ : GCN-+				0		KNYHI ENEVE	RIKKIV				
D7 · D9	EDETOOL			EI KV							
PF:DC	EDEIQQU	LEKNJQLKQL	TSQLEEKNQ								
F3.F0											
	201	210	220	220	240	250	260	270	200	200	400
	301	310	320	330	340	350	300	370	380	390	400
TET12SN	SGPGSPE	DENSQLEEKI	SQLKQKNSE	LKEEIQQLEY	GSGPGSPEDK	ISELKEENQQ	LEQKIQQLKE	ENSQLEYGSGF	GDIEQELERA	ESIRRLEQEV	NQ
APH: APH											
P3:P4											
BCR:BCR									-DIEOELERA	ESIRRLEOEV	/NO
GCN _{ch} : GCN _{ch}											
D7 · D8											
	CDE					TOLEKEENQQ	LLÓKIQÓLKLI	LINDQLLI			
P3:P0	SPEI	DENSQUEEKI	SQLKQKINSE	LVEETQUET							
	401	410	420	420	440	450	460				
	401	410	420	430	440	450	460				
TET12SN	ERSRMQY	LQTLLEKSGP	GSPEDKNSE	LKEEIQQLEE	ENQQLEEKIS	ELKYGLEHHH	ННННН				
APH: APH											
P3:P4											
BCR:BCR	ERSRMOV	LOTLLFK									
GCN + CCN	2112111121	-2									
P/:P0											
P5:P6			-SPEDKNSE	LKEEIQQLEEI	ENQQLEEKIS	ELKY					

Fig. S1 The sequence alignment for the comparative modeling of the triangle (a heterotrimer of SYNZIP1-SYNZIP6, SYNZIP5-SYNZIP4, and SYNZIP3-SYNZIP2, top) and the tetrahedron (TET12SN, bottom).

Fig. S2 The quality of SAXS fitting of 100, 200, and 500 triangle (**A**, **B**) and tetrahedron models (**C**, **D**). **A.** Distribution of χ^2 values of the triangle models. **B.** Average of χ^2 values of the triangle models. **C.** Distribution of χ^2 values of the tetrahedron models. **D.** Average of χ^2 values of the tetrahedron models. All models were refined through 10 cycles of MD optimization. The error bars represent standard deviations.

Fig. S3 The distribution of the SAXS fitting data. **A, B.** Distribution of χ^2 values of the triangle models refined at $n_{MD} = 1$, 3, 5, 7, 10, 15, and 20 (**A**) and of 100, 200, and 500 models refined at $n_{MD} = 10$ (**B**). **C, D.** Distribution of χ^2 values of the tetrahedron models refined at $n_{MD} = 1$, 3, 5, 7, 10, 15, and 20 (**C**) and of 100, 200, and 500 models refined at $n_{MD} = 10$ (**D**). The whisker represents the highest and lowest values, and the box represents the upper and lower quartiles and the median. The average (x) and outliers (•) values are also indicated.

Fig. S4 The triangle models with a χ^2 value of 1.01. **A.** The best-quality model refined at $n_{MD} = 15$. **B.** The best-quality model refined at $n_{MD} = 20$.

Fig. S5 The R_g values plotted against χ^2 of comparative models. **A.** Total 1100 triangle models refined through MD optimization (n_{MD}) ranging from 1 to 15 cycles (red) and the 100 models refined at $n_{MD} = 10$ (green). **B.** Total 1100 tetrahedron models refined at n_{MD} ranging 1 to 15 (blue) and the 100 models refined at $n_{MD} = 10$ (yellow). The grey lines indicate the experimentally determined values from the SAXS data (R_{g} , e_{xp}).

Fig. S6 The unnormalized DOPE score plotted against the χ^2 values of the triangle (A) and tetrahedron models (B). Total 1100 models refined at n_{MD} ranging from 1 to 15 were plotted in each panel and the Pearson correlation coefficient, r, is indicated.

Fig. S7 The structure models of CCPO triangles with different linkers. (**A**) A model of the TRI6 triangle¹ with a CORGE score of 0.00017. (**B**) A model of the DoNA-GN₄ triangle² with a CORGE score of 0.0137. The predicted R_g values ($R_{g, pred}$) are compared with the experimentally determined value ($R_{g, exp}^1$) or the value from the all-atom MD simulation ($R_{g, MD}^2$).

Supplementary References

- 1 S. Božič Abram, H. Gradišar, J. Aupič, A. R. Round and R. Jerala, *ACS Chem. Biol.*, 2021, **16**, 310–315.
- A. L. Boyle, E. H. C. Bromley, G. J. Bartlett, R. B. Sessions, T. H. Sharp, C. L. Williams, P. M. G. Curmi, N. R. Forde, H. Linke and D. N. Woolfson, *J. Am. Chem. Soc.*, 2012, 134, 15457–15467.