Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2022

Electronic Supporting Information

Aggregation-Induced Enhanced Fluorescence by Hydrogen Bonding in π -Conjugated Tricarbocycles with a CF₂CF₂-containing Cyclohexa-1,3-diene skeleton

Haruka Ohsato,^[a] Masato Morita,^[a] Shigeyuki Yamada,^{*} ^[a] Tomohiro Agou,^[b] Hiroki Fukumoto,^[b] and Tsutomu Konno^{*[a]}

 ^[a] Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
 ^[b] Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan

*Correspondence: <u>syamada@kit.ac.jp</u> (S.Y.) and <u>konno@kit.ac.jp</u> (T.K.)

1. Experimental	••••	S-2
2. NMR Spectra	••••	S-10
3. X-ray crystallographic analysis	••••	S-18
4. DFT Calculation	••••	S-19
Cartesian coordinate	••••	S-21
5. Photophysical Characteristis		
Solution state	••••	S-25
Solvent effect	••••	S-26
Crystalline state	••••	S-31
AIEE characteristics	••••	S-33

Table of Contents:

1. Experimental

1.1. General

The progress of the reactions was monitored via thin-layer chromatography (TLC), which was performed on silica gel TLC plates (Merck, Silica gel, 60F₂₅₄). Column chromatography was performed using silica gel (Fujifilm Wako Pure Chemical Corporation, Wako-gel® 60N, 38–100 mm). ¹H nuclear magnetic resonance (NMR) (400 MHz), ¹³C NMR (100 MHz), and ¹⁹F NMR (376 MHz) spectra were acquired using a Bruker AVANCE III 400 NMR spectrometer in chloroform-*d* (CDCl₃) solution. The chemical shifts in ¹H and ¹³C NMR spectra were reported in parts per million (ppm) based on the residual proton or carbon in the NMR solvent. The chemical shift in ¹⁹F NMR spectra were also reported in ppm based on the internal standard, CFCl₃ (*d*_F = 0 ppm). Infrared (IR) spectra were recorded using the KBr method using a JASCO FTIR-4100 type A spectrometer. IR spectra are reported in wavenumber (cm⁻¹) units. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS700MS spectrometer using the fast atom bombardment (FAB) method. Characterization data for **3a–c** were reported in *Synthesis* **2011**, 33–44. In the molecules, **4**, **5**, **7**, **8**, and **9**, which may be produced as a diastereomeric mixture, characterization data of the major products were only described because the data could not be safely assigned as minor products.

Scheme S1. Synthetic procedure of the desired molecules **2a**–**d** from the commercially available **1**.

1.2. Typical procedure for the synthesis of 5-phenyl-3,3,4,4-tetrafluorotetrahydrofuran-2-ol (4a)

In a two-necked round-bottomed flask containing a Teflon[®]-coated magnetic stirring bar was placed bishomoallyl alcohol **3a** (1.16 g, 5.0 mmol) in CH₂Cl₂ (25 mL), and the whole solution was cooled to -78 °C. O₃ gas was bubbled through the solution at -78 °C for 3 h, followed by treating with Me₂S (3.7 mL, 50 mmol) after checking complete consumption of starting **3a** by the TLC analysis. After removing solvent using rotary evaporator, the crude product was purified by silica gel column chromatography to afford the corresponding lactol **4a** as a white solid in a diasteremeric mixture (0.98 g, 4.1 mmol, 83%).

1.3.1. 3,3,4,4-Tetrafluoro-5-phenyltetrahydrofuran-2-ol (4a)

Yield: 83% (White solid) as a diastereomeric mixture; M.p.: 50.4–51.8 °C; ¹H NMR (CDCl₃): δ 3.54 (s, 1H), 5.37 (dd, *J* = 15.9, 8.8 Hz, 1H), 5.61 (dt,, *J* = 6.4, 2.8 Hz, 1H), 7.35–7.46 (m, 5H); ¹⁹F NMR (CDCl₃): δ –129.53 (dm, *J* = 245.8 Hz, 1F), –128.59 (ddd, *J* = 239.8, 15.8, 2.7 Hz, 1F), –128.32 (dm, *J* = 246.6 Hz, 1F, CF), –120.28 (dm, 240.3 Hz, 1F); ¹³C NMR (CDCl₃): δ 80.0 (dd, *J* = 29.2, 24.1

Hz), 94.2–95.2 (m, 1C), 113.0–119.0 (m, 2C for CF₂CF₂), 127.4, 127.5, 128.7, 129.8; IR (KBr): *v* 3419, 3071, 2911, 2755, 2464, 1959, 1896, 1589, 1499, 1447, 1319, 1149, 1041, 917, 730 cm⁻¹; HRMS (FAB) Calcd for C₁₀H₈F₄O₂ [M]⁺: 264.0773, found: 264.0777.

1.3.2. 3,3,4,4-Tetrafluoro-5-(p-(trifluoromethyl)phenyl)tetrahydrofuran-2-ol (4b)

Yield: 30% (White solid) as a diastereomeric mixture; M.p.: 89.2–89.4 °C; ¹H NMR (CDCl₃): δ 3.60 (s, 1H), 5.43 (dd, *J* = 15.6, 8.9 Hz, 1H), 5.64 (s, 1H), 7.51 (d, *J* = 8.2 Hz, 2H), 7.69 (d, *J* = 8.2 Hz, 2H); ¹⁹F NMR (CDCl₃): δ –128.89 (dm, *J* = 246.3 Hz, 1F, CF₂), –128.37 (dd, *J* = 239.8, 15.3 Hz, 1F), –127.82 (dm, *J* = 246.3 Hz, 1F), –119.12 (dm, 239.8 Hz, 1F), –

63.36 (s, 3F); ¹³C NMR (CDCl₃): δ 79.4 (dd, *J* = 29.3, 24.2 Hz), 94.3–95.4 (m, 1C), 112.6–119.2 (m, 2C for CF2CF2), 123.8 (q, J = 272.1 Hz), 125.6, 127.5, 131.8 (q, *J* = 33.0 Hz), 134.7; IR (KBr): *ν* 3501, 2916, 2466, 2305, 1941, 1626, 1428, 1353, 1338, 1236, 1178, 1127, 1042, 859, 746 cm⁻¹; HRMS (FAB) Calcd for C₁₁H₇F₇O₂ [M]⁺: 304.0334, found: 304.0343.

1.3.3. 3,3,4,4-Tetrafluoro-5-(p-methoxyphenyl)tetrahydrofuran-2-ol (4c)

Yield: 88% (White solid) as a diastereomeric mixture; M.p.: 63.8–64.8 °C; ¹H NMR (CDCl₃): δ 3.49 (d, *J* = 5.2 Hz, 1H), 3.83 (s, 3H), 5.30 (dd, *J* = 15.9, 8.9 Hz, 1H), 5.59 (s, 1H), 6.95 (d, *J* = 8.8 Hz, 2H), 7.31 (d, *J* = 8.8 Hz, 2H); ¹⁹F NMR (CDCl₃, CFCl₃): δ -129.28 (dm, *J* = 246.0 Hz, 1F), -128.77 (ddd, *J* = 240.1, 16.2, 3.3 Hz, 1F), -128.30 (dm, *J* = 246.0 Hz, 1F), -

120.67 (dm, 240.1 Hz, 1F); ¹³C NMR (CDCl₃): δ 55.4, 79.9 (dd, *J* = 29.5, 24.0 Hz), 94.6 (dd, *J* = 36.6, 23.3 Hz), 112.4–119.2 (m, 2C for CF2CF2), 114.1, 122.6, 129.0, 160.6; IR (KBr): *v* 3466, 2973, 2914, 2557, 2433, 2041, 1903, 1615, 1469, 1443, 1353, 1262, 1014, 871, 785 cm⁻¹; HRMS (FAB) Calcd for C11H10F4O2 [M]⁺: 266.0566, found: 266.0568.

1.4. Typical procedure for the synthesis of 1-phenyl-2,2,3,3-tetrafluoro-4-phenylbutan-1,4-diol (5a)

In a two-necked round-bottomed flask, equipped with a Teflon[®]-coated magnetic stirrer bar was put a solution of lactol **4a** (0.71 g, 3.0 mmol) and THF (3.0 mL), and the flask was dipped into an ice bath. To the solution was added dropwise a THF solution of phenylmagnesium bromide (0.85 mol L–1 THF solution, 22 mL, 18 mmol), prepared from Mg turning (0.69 g, 28.6 mmol) and bromobenzene (4.14 g, 26 mmol), at 0 °C, followed by continuous stirring at reflux temperature overnight. The reaction mixture was poured into a saturated aqueous NH₄Cl solution (50 mL). The crude product was extracted with EtOAc (50 mL) three times, and the combined organic layer was dried over Na₂SO₄, followed by filtration, and concentration under high vacuum condition using a rotary evaporator. The residue was purified by silica gel column chromatography to afford the corresponding tetrafluorinated 1,4-diol **5a** as a white solid in a diastereomeric mixture (0.92 g, 2.9 mmol, 98%).

1.4.1. 2,2,3,3-Tetrafluoro-1,4-diphenylbutan-1,4-diol (5a)

Yield: 98% (White solid) as a diastereomeric mixture; M.p.: 131.0–131.5 °C; ¹H NMR (CDCl₃): δ 3.22 (brs, 2H), 5.22 (d, *J* = 20.0 Hz, 2H), 7.39–7.47 (m, 10H); ¹³C NMR (CDCl₃): δ 72.6 (dd, *J* = 30.4, 11.5 Hz), 116.0 (tt, J = 263.4, 29.3 Hz), 128.1, 128.4, 129.3, 134.7; ¹⁹F NMR (CDCl₃): δ –127.55 (dd, *J* = 274.0, 19.2 Hz, 2F), –116.18 (d, *J* = 274.0 Hz, 2F, CF₂); IR (KBr): ν

3379, 3090, 3066, 2927, 1958, 1889, 1587, 1496, 1421, 1342, 1003, 919, 831, 793, 725 cm⁻¹; HRMS (FAB) Calcd for C₁₆H₁₄F₄NaO₂ [M+Na]⁺: 337.0828, Found: 337.0825.

1.4.2. 2,2,3,3-Tetrafluoro-1-phenyl-4-[p-(trifluoromethyl)phenyl]butan-1,4-diol (5b)

Yield: 72% (Pale yellow solid) as a diastereomeric mixture; M.p.: 145.6–146.7 °C; ¹H NMR (CDCl₃): δ 4.31 (brs, 1H), 4.49 (brs, 1H), 5.21 (d, *J* = 20.0 Hz, 1H), 5.32 (d, *J* = 20.0 Hz, 1H), 7.32–7.42 (m, 3H), 7.44–7.50 (m, 2H), 7.60 (d, *J* = 8.8 Hz, 2H), 7.64 (d, *J* = 8.8 Hz, 2H); ¹⁹F NMR (CDCl₃): δ –115.94 (dd, *J* = 274.7, 19.7 Hz, 1F), –127.87 (dd, *J* = 274.7, 19.7, 5.3 Hz, 1F), –116.40 (d, *J* = 275.2 Hz, 1F), –116.01 (d, *J* = 275.2 Hz, 1F), –63.17 (s,

3F); ¹³C NMR (CDCl₃): *δ* 72.2 (dd, *J* = 37.5, 22.9 Hz), 72.5 (dd, *J* = 38.2, 22.9 Hz), 112.8–119.1 (m, 2C for CF2CF2), 123.9 (q, J = 272.2 Hz), 127.4, 128.0, 128.5, 129.5, 131.2 (q, J = 32.2 Hz), 133.1, 134.5, 138.5; IR (KBr): *v* 3395, 2959, 2874, 1727, 1496, 1334, 1203, 1126, 1070, 1017, 994, 860, 836, 737, 717 cm⁻¹; HRMS (FAB) Calcd for C₁₇H₁₃F₇O₂Na [M+Na]⁺: 405.0701, Found: 405.0691.

1.4.3. 2,2,3,3-Tetrafluoro-1-(p-methoxyphenyl)-4-phenylbutan-1,4-diol (5c)

Yield: 98% (White solid) as a diastereomeric mixture; M.p.: 95.3–96.7 °C; ¹H NMR (CDCl₃): δ 2.97 (brs, 1H), 3.03 (brs, 1H), 3.82 (s, 3H), 5.22 (t, *J* = 20.0 Hz, 1H), 5.23 (t, *J* = 20.0 Hz, 1H), 6.93 (d, *J* = 8.8 Hz, 2H), 7.39–7.42 (m, 5H), 7.47–7.50 (m, 2H); ¹³C NMR (CDCl₃): δ 55.4, 72.3 (dd, J = 41.9, 22.8 Hz), 72.6 (dd, *J* = 41.7, 22.7 Hz), 114.0,

112.5–119.0 (m, 2C for CF2CF2), 127.0, 128.2, 128.5, 129.3, 129.5, 134.9, 160.4; ¹⁹F NMR (CDCl₃): δ –127.81 (dt, *J* = 275.2, 21.5 Hz, 2F), –116.47 (dd, *J* = 274.1, 59.5 Hz, 2F); IR (KBr): ν 3376, 2957, 2838, 1613, 1516, 1495, 1456, 1442, 1259, 1177, 1096, 1028, 917, 844, 731 cm⁻¹; HRMS (FAB) Calcd for C₁₇H₁₇F₄O₃ [M]⁺: 344.1036, Found: 334.1045.

1.4.4. 2,2,3,3-Tetrafluoro-1,4-bis(p-methoxyphenyl)butan-1,4-diol (5d)

Yield: 88% (White solid) as a diastereomeric mixture; M.p.: 152.4–153.9 °C; ¹H NMR (CDCl₃): δ 3.07 (brs, 2H), 3.82 (s, 6H), 5.17 (d, *J* = 20.1 Hz, 2H), 6.92 (d, *J* = 8.6 Hz, 4H), 7.39 (d, *J* = 8.6 Hz, 4H); ¹⁹F NMR (CDCl₃): δ –128.06 (dd, *J* = 273.1, 19.6 Hz, 2F), –116.46 (d, *J* = 273.1 Hz, 2F); ¹³C NMR (CDCl₃): δ 55.4, 72.3 (dd, *J* = 30.5, 22.9 Hz), 113.0–120.0 (m, 1C for CF2), 113.8, 126.8, 129.4,

160.3; IR (KBr): v3468, 3399, 3008, 2848, 1727, 1610, 1581, 1444, 1353, 1280, 1257, 1177, 1081, 936, 785 cm⁻¹; HRMS (FAB) Calcd for C₁₈H₂₀F₄O₄ [M+Na]⁺: 374.1141, Found: 374.1134.

1.5. Typical procedure for the synthesis of 2,2,3,3-tetrafluoro-1-(*p*-methoxyphenyl)-4-phenylbutan-1,4-dione (6b) [Method A for the synthesis of 6a and 6c] To a solution of pyridinium dichromate (PDC, 0.47 g, 1.2 mmol) in CH₂Cl₂ (2.0 mL) was added 5c (0.10 g, 0.30 mmol) at room temperature, and the whole was heated at the reflux temperature for 2 d. After cooling the reaction mixture to room temperature, the mixture was passed through celite to give the crude solution, which was purified by silica gel column chromatography, affording the corresponding diketone derivative 6c in 91% (0.093 g, 0.27 mmol) as a white solid.

[Method B for the synthesis of 6b–d] Potassium hydrogen sulfate (4.5 mg, 0.025 mmol) and TEMPO (0.90 mg, 0.005 mmol) was added to a stirred solution of 5c (0.16 g, 0.50 mmol) in acetonitrile (5.0 mL) at room temperature, and the resulting mixture was cooled to 0 °C. Sodium hypochlorite pentahydrate (0.22 mg, 1.2 mmol) was added to the reaction mixture and continuously stirred at that temperature for 4 h. After 4 h, the crude product was extracted with ethyl acetate, and the combined organic extract was washed with brine, dried over sodium sulfate, and removed the solvent *in vacuo*. The residue was purified by silica column chromatography to afford the corresponding 6c in 82% (0.14 g, 0.41 mmol) as a white solid.

1.5.1. 2,2,3,3-Tetrafluoro-1,4-diphenylbutan-1,4-dione (6a)

Yield: 61% (White solid); M.p.: 73.8–74.2 °C; ¹H NMR (CDCl₃): δ 7.53–7.56 (m, 4H), 7.69 (tt, *J* = 7.5, 1.3 Hz, 2H), 8.12 (d, *J* = 7.5 Hz, 4H); ¹³C NMR (CDCl₃): δ 111.7 (tt, *J* = 270.2, 26.2 Hz) 129.0, 130.3, 131.8, 135.1, 185.8 (t, *J* = 29.3 Hz); ¹⁹F NMR (CDCl₃): δ –113.51 (s, 4F); IR (KBr): *v* 3376, 3085, 3077, 2011, 1988, 1924, 1595, 1578, 1449, 1324, 1308, 1192, 1078, 990, 938, 764

cm⁻¹; HRMS (FAB) Calcd for C₁₆H₁₄F₄NaO₂ [M+Na]⁺: 311.0695, Found: 311.0705.

1.5.2. 1-(*p*-Trifluoromethylphenyl)-2,2,3,3-tetrafluoro-4-phenyl butan-1,4-dione (6b)

Yield: 77% (Colorless liquid); ¹H NMR (CDCl₃): δ 7.54 (t, *J* = 7.9 Hz, 2H), 7.70 (t, *J* = 7.5 Hz, 1H), 7.80 (d, *J* = 8.5 Hz, 2H), 8.12 (d, *J* = 7.9 Hz, 2H), 8.22 (d, *J* = 8.2 Hz, 2H); ¹⁹F NMR (CDCl₃): δ -114.75 to -114.73 (m, 2F), -112.84 to -112.82 (m, 2F), -64.03 (s, 2F); ¹³C NMR (CDCl₃): δ 111.3 (tt, *J* = 268.5, 25.6 Hz), 111.7 (tt, *J* = 271.1, 26.4 Hz), 123.3 (q,

J = 272.9 Hz), 125.9 (q, J = 3.7 Hz), 128.9, 130.2 (t, J = 2.9 Hz), 130.4 (t, J = 2.9 Hz), 131.1, 134.6, 135.4, 135.9 (q, J = 33.0 Hz), 185.2 (t, J = 27.9 Hz), 185.7 (t, J = 27.5 Hz); IR (KBr): v 3503, 3403, 3068, 1699, 1599, 1451, 1319, 1292, 1258, 1177, 1056, 1017, 889, 856, 770 cm⁻¹; HRMS (FAB) Calcd for C₁₇H₁₀F₇O₂ [M+H]⁺: 379.0569, Found: 379.0565.

1.5.3. 2,2,3,3-Tetrafluoro-1-(*p*-Methoxyphenyl)-4-phenylbutan-1,4-dione (6c)

Yield: 91% (White solid); M.p.: 104.5–105.3 °C; ¹H NMR (CDCl₃): δ 3.91 (s, 3H), 7.00 (d, *J* = 8.0 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 2H), 7.68 (tdd, *J* = 7.4, 2.5, 1.6 Hz, 1H), 8.10–8.12 (m, 4H); ¹³C NMR (CDCl₃): δ 55.8, 112.1 (tt, *J* = 270.2, 26.9 Hz), 111.5 (tt, *J* = 269.1, 26.3 Hz), 111.9 (tt, *J* = 269.9, 27.2 Hz), 114.4, 124.4, 128.9, 130.2 (t, *J* = 3.1 Hz), 132.0,

132.9 (t, J = 3.1 Hz), 134.9, 165.3, 183.9 (t, J = 26.9 Hz), 185.8 (t, 27.2 Hz); ¹⁹F NMR (CDCl₃): δ -114.05 (s, 2F), -112.54 (s, 2F); IR (KBr): ν 3067, 3019, 2961, 2850, 1707, 1599, 1453, 1429, 1295, 1179, 1103, 1018, 886, 795, 718 cm⁻¹; HRMS (FAB) Calcd for C₁₇H₁₃F₄O₃ [MH]⁺: 341.0801, Found: 341.0802.

1.5.4. 2,2,3,3-Tetrafluoro-1,4-bis(p-methoxyphenyl)butan-1,4-dione (6d)

Yield: 35% (Yellow solid); M.p.: 101.3–101.8 °C; ¹H NMR (CDCl₃): δ 3.91 (s, 6H), 6.99 (d, *J* = 9.0 Hz, 4H), 8.12 (d, *J* = 9.0 Hz, 2H); ¹⁹F NMR (CDCl₃): δ – 113.06 (s, 4F, CF₂); ¹³C NMR (CDCl₃): δ 55.8, 111.8 (tt, *J* = 269.2, 27.2 Hz), 114.3, 124.7, 132.9, 165.2, 183.9 (t, *J* = 28.4 Hz); IR (KBr): *v* 2979, 2944, 2846, 2650,

2592, 1696, 1601, 1512, 1428, 1323, 1275, 1172, 1055, 821, 775 cm⁻¹; HRMS (FAB) Calcd for C₁₈H₁₅F₄O₄ [MH]⁺: 371.0906, Found: 371.0893.

1.6. Typical procedure for the synthesis of 3,6-diphenyl-4,4,5,5-tetrafluoroocta-1,7-dien-3,6-diol (7a)

In a two-necked round-bottomed flask containing a Teflon®-coated magnetic stirring bar was put the diketone **6a** (0.16 g, 0.50 mmol) and THF (2.0 mL). To the solution was slowly added vinylmagnesium chloride (2.1 M in THF, 1.8 mL, 3.0 mmol) at 0 °C, and the resultant was stirred at reflux temperature. After being stirred for 14 h, the whole was quenched by pouring into ice-cooled saturated NH₄Cl solution. The organic layer was extracted with Et₂O three times and washed with brine, and then dried over anhydrous Na₂SO₄. After filtration, the filtrate was evaporated *in vacuo* to remove the organic solvent, and the residue was purified by silica gel column chromatography to give the corresponding **7a** in 43% yield (0.079 g, 0.22 mmol) as yellow solid.

1.6.1. 4,4,5,5-Tetrafluoro-3,6-diphenylocta-1,7-dien-3,6-diol (7a)

Yield: 43% (Yellow solid) as a diastereomeric mixture; M.p.: 97.8–98.7 °C; ¹H NMR (CDCl₃): δ 3.82 (s, 1H), 3.85 (s, 1H), 5.40 (d, *J* = 10.4 Hz, 2H), 5.49 (d, *J* = 16.8 Hz, 2H), 6.54–6.66 (m, 2H), 7.31–7.38 (m, 6H), 7.51–7.57 (m, 4H); ¹³C NMR: δ 77.7 (dd, *J* = 51.6, 25.0 Hz), 116.3, 117.9 (tt, J = 266.0, 30.0 Hz), 126.9, 128.0, 128.3, 137.6, 138.2; ¹⁹F NMR (CDCl₃): δ –113.71 (d, *J* = 278.8 Hz, 2F), –112.45 (d, *J* = 278.8 Hz, 2F); IR (KBr): *v* 3589, 3482, 3244, 2925, 1720, 1642, 1494, 1449,

 $1261,\,1109,\,1004,\,996,\,873,\,754,\,738\,\,cm^{-1};\,HRMS\,(FAB)\,Calcd\,\,for\,\,C_{20}H_{18}F_4NaO_2\,\,[M+Na]^+:\,389.1141,\,Found:\,389.1151.$

1.6.2. 4,4,5,5-Tetrafluoro-3-[p-(trifluoromethyl)phenyl]-6-phenylocta-1,7-dien-3,6-diol (7b)

Yield: 45% (Yellow liquid) as a diastereomeric mixture; ¹H NMR (CDCl₃): δ 3.58 (s, 1H), 4.19 (s, 1H), 5.40–5.50 (m, 2H), 5.50–5.58 (m, 2H), 6.52–6.67 (m, 2H), 7.32–7.40 (m, 3H), 7.51–7.71 (m, 6H); ¹⁹F NMR (CDCl₃): δ –113.96 (d, *J* = 279.9 Hz, 2F), –113.09 (d, *J* = 279.9 Hz, 2F), –63.73 (s, 3F); ¹³C NMR (CDCl₃): δ 77.5 (t, *J* = 23.8 Hz), 77.9 (t, *J* = 24.2 Hz), 116.8, 114.2–121.0 (m, 2C for CF2C2), 124.0 (g, *J* = 272.2 Hz), 124.7, 126.6, 127.4, 128.0, 128.3,

130.1, 136.1, 137.0, 137.5, 138.3, 142.2; IR (neat): *v* 3252, 2896, 1931, 1891, 1619, 1496, 1450, 1414, 1331, 1166, 1119, 997, 838, 757, 731 cm⁻¹; HRMS (FAB) Calcd for C₂₁H₁₇F₇NaO₂ [M+Na]⁺: 457.1014, Found: 457.1026.

1.6.3. 4,4,5,5-Tetrafluoro-3-(p-methoxyphenyl)-6-phenylocta-1,7-dien-3,6-diol (7c)

Yield: 40% (Yellow liquid) as a diastereomeric mixture; ¹H NMR (CDCl₃): δ3.82 (s, 3H), 4.64 (s, 1H), 4.76 (s, 1H), 5.40 (d, *J* = 10.4 Hz, 2H), 5.49 (d, *J* = 16.8 Hz, 2H), 6.54–6.66 (m, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 7.31–7.41 (m, 3H), 7.49 (d, *J* = 8.8 Hz, 2H), 7.58 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (CDCl₃): δ55.2, 77.7 (t, *J* = 24.0 Hz), 77.8 (t, *J* = 24.2 Hz), 113.3, 116.1, 116.2, 116.4, 118.0 (tt, *J* = 265.6, 29.7 Hz), 118.0 (tt, *J* = 265.8, 30.2 Hz), 126.9, 127.9, 128.27,

128.31, 130.3, 137.5, 138.2, 159.3; ¹⁹F NMR (CDCl₃): δ -113.76 (ddd, *J* = 279.4, 113.2, 5.6 Hz, 2F), -113.47 (dd, *J* = 279.4, 26.4 Hz, 2F); IR (neat): *v* 3434, 2936, 2839, 2046, 1895, 1641, 1607, 1584, 1508, 1348, 1132, 931, 831, 790, 754 cm⁻¹; HRMS (FAB) Calcd for C₂₁H₂₀F₄NaO₃ [M + Na]⁺: 419.1246, Found: 419.1253.

1.6.4. 4,4,5,5-Tetrafluoro-3,6-bis(p-methoxyphenyl)octa-1,7-dien-3,6-diol (7d)

Yield: 40% (Yellow solid) as a diastereomeric mixture; M.p.: 114.8–115.2 °C; ¹H NMR (CDCl₃): δ 3.79 (s, 6H), 3.82 (s, 2H), 5.37 (d, *J* = 10.8 Hz, 2H), 5.47 (d, *J* = 17.1 Hz, 2H), 6.53–6.63 (m, 2H), 6.84–6.89 (m, 4H), 7.42–7.49 (m, 4H); ¹³C NMR (CDCl₃): δ 55.3, 77.7 (t, *J* = 24.5 Hz), 113.4, 116.1, 118.1 (tt, *J* = 266.1, 29.5 Hz), 128.2, 130.4, 137.7, 159.4; ¹⁹F NMR (CDCl₃): δ –114.14 (dd, *J* = 111.4, 5.6 Hz, 1F), –113.39

(dd, *J* = 113.7, 2.2 Hz, 1F), -112.8 (d, *J* = 37.6 Hz, 1F), -112.1 (d, *J* = 26.5 Hz, 1F); IR (KBr): *v*3611, 3509, 2942, 2845, 1610, 1510, 1445, 1303, 1251, 1157, 1022, 981, 931, 804, 754 cm⁻¹; HRMS (FAB) Calcd for C₂₂H₂₂F₄O₄ [M]⁺: 426.1454, Found: 426.1453.

1.7. Typical procedure for the synthesis of 4,4,5,5-tetrafluoro-3,6-diphenylcyclohex-1-en-3,6-diol (8a)

In a two-necked round-bottomed flask, equipped with a Teflon[®]-coated magnetic stirring bar, reflux condenser and an inlet tube for argon, was placed Grubbs 2nd generation catalyst (6.7 mg, 7.1 mmol) and CH₂Cl₂ (2.0 mL). To the solution was added **7a** (0.026 g, 0.071 mmol) at room temperature, and the whole was heated at reflux temperature. After refluxing for 24 h, the reaction mixture was allowed to cool to room temperature. The whole solution was purified by silica column chromatography to afford the corresponding **8a** in 63% yield (15 mg, 0.04 mmol) as a white solid.

1.7.1. 4,4,5,5-Tetrafluoro-1,4-diphenylcyclohex-2-en-1,4-diol (8a)

Yield: 63% (White solid) as a diastereomeric mixture; M.p.: 185.6–185.9 °C; ¹H NMR (CDCl₃): δ 2.91 (s, 2H), 6.24 (s, 2H), 7.39–7.59 (m, 10H); ¹³C NMR (CDCl₃): δ 75.5 (dd, *J* = 21.0, 19.3 Hz), 107.0–118.0 (m, 1C for CF2), 127.7, 128.3, 129.2, 132.2, 136.2; ¹⁹F NMR (CDCl₃): δ –125.80 (d, *J* = 264.9 Hz, 2F), –121.14 (d, *J* = 264.9 Hz, 2F); IR (KBr): *v* 3432, 3334, 2854, 1725, 1495, 1451, 1340, 1298, 1212, 1156, 1145, 1120, 994, 871, 759 cm⁻¹; HRMS (FAB) Calcd for C₁₈H₁₄F₄NaO₂

[M+Na]⁺: 361.0828, Found: 361.0828.

1.7.2. 4,4,5,5-Tetrafluoro1-1-[p-(trifluoromethyl)phenyl]-4-phenylcyclohex-2-en-1,4-diol (8b)

Yield: 38% (white solid) as a diastereomeric mixture; M.p.: 183.8–184.6 °C; ¹H NMR (CDCl₃): δ 2.98 (s, 1H), 2.88 (s, 1H), 6.22 (dt, *J* = 5.3, 3.4 Hz, 1H), 6.31 (dt, *J* = 5.3, 3.4 Hz, 1H), 7.41–7.47 (m, 3H), 7.56 (d, *J* = 6.8 Hz, 2H), 7.67–7.72 (m, 4H); ¹⁹F NMR (CDCl₃): δ –126.05 (dd, *J* = 264.9, 18.0 Hz, 1F), –124.61 (dd, *J* = 264.9, 18.0 Hz, 1F), –121.13 (dd, *J* = 264.9, 19.1 Hz, 1F), –119.97 (dd, *J* = 264.9, 19.1 Hz, 1F), –63.14 (s, 3F): ¹³C NMR (CDCl₃):

 δ 75.3 (t, *J* = 22.0 Hz), 75.4 (t, *J* = 22.3 Hz), 117.3 (tt, *J* = 274.1, 38.5 Hz), 117.4 (tt, *J* = 274.4, 38.8 Hz), 125.4, 127.6, 128.5, 129.5, 131.5, 131.7, 133.0, 133.2, 136.0, 139.9, one carbon of CF₃ cannot be assigned due to significant low intensity; IR (KBr): *v* 3389, 3069, 3045, 1621, 1452, 1327, 1233, 1183, 1169, 1139, 1014, 988, 881, 832, 763 cm⁻¹; HRMS (FAB) Calcd for C₁₉H₁₃F₇NaO₂ [M+Na]⁺: 429.0701, Found: 429.0704.

1.7.3. 4,4,5,5-Tetrafluoro-1-(p-Methoxyphenyl)-4-phenylcyclohex-2-en-1,4-diol (8c)

Yield: 45% (White solid) as a diasteromeric mixture; M.p.: 181.9–182.3 °C; ¹H NMR (CDCl₃): δ 2.90 (brs, 1H), 2.91 (brs, 1H), 3.82 (s, 3H), 6.21 (s, 2H), 6.92–6.96 (m, 2H), 7.40–7.45 (m, 3H), 7.49 (d, J = 8.6 Hz, 2H), 7.57 (d, J = 7.3 Hz, 2H); ¹³C NMR (CDCl₃): δ 55.4, 75.4 (t, J = 37.9 Hz), 75.5 (t, J = 38.8 Hz), 113.7, 114.5 (tm, J = 287.1 Hz), 114.8 (tm, J

= 286.4 Hz), 127.7, 128.3, 129.0, 129.3, 131.9, 132.0, 132.5, 136.2, 160.3; ¹⁹F NMR (CDCl₃): δ -126.15 (dd, *J* = 263.7, 19.5 Hz, 1F), -121.65 (dd, *J* = 264.3, 19.9 Hz, 1F), -120.11 (dd, *J* = 264.3, 19.9 Hz, 1F); IR (KBr): *v* 3537, 3398, 2974, 2844, 1872, 1701, 1609, 1515, 1450, 1405, 1293, 1184, 992, 836, 764 cm⁻¹; HRMS (FAB) Calcd for C₂₁H₂₀F₄NaO₃ [M+Na]⁺: 391.0933, Found: 391.0941.

1.7.4. 1,4-Di(p-methoxyphenyl)-5,5,6,6-tetrafluorocyclohex-2-en-1,4-diol (8d)

Yield: 34% (White solid) as a diastereomeric mixture; M.p.: 71.2–71.5 °C; ¹H NMR (CDCl₃): δ 3.71 (s, 6H), 3.93 (s, 2H), 6.06 (s, 2H), 6.83 (d, *J* = 8.8 Hz, 4H), 7.41 (d, *J* = 8.8 Hz, 4H); ¹⁹F NMR (CDCl₃): δ –125.64 (d, *J* = 262.0 Hz, 2F), –120.7 (d, *J* = 262.0 Hz, 2F); ¹³C NMR (MeOH-*d*₄): δ 55.7, 75.8 (t, *J* = 21.9 Hz), 114.1, 116.1 (tt, *J* = 214.4, 28.0 Hz), 130.2, 131.5, 132.8, 161.3; IR (KBr): *v* 3443, 2936, 2840, 1611, 1513, 1464,

1420, 1303, 1255, 1108, 1017, 986, 902, 831, 768 cm⁻¹; HRMS (FAB) Calcd for C₂₀H₁₈F₄O₄ [M]⁺: 398.1141, Found: 398.1145.

1.8. Typical procedure for the synthesis of 2,2,3,3-tetrafluoro-1,4-diphenylcyclohexan-1,4-diol (9a)

In a two-necked round-bottomed flask, equipped with a teflon[®]-coated magnetic stirring bar and three-way stopcock attached to a balloon filled with hydrogen gas, were added 10% Pd/C (0.024 g, 0.02 mmol), tetrafluorinated cyclohexen-1,4-diol **8a** (0.039 g, 0.10 mmol) and methanol (10 mL). The hydrogen gas was bubbled into the solution using a vacuum aspirator three times, then the whole solution was vigorously stirred at room temperature for 24 h. The crude product was passed through silica gel to remove palladium residues, after which the crude product was purified by silica column chromatography to afford the corresponding **9a** in 89% (0.030 g, 0.09 mmol) as a white solid

as a diastereomeric mixture.

1.8.1. 2,2,3,3-Tetrafluoro-1,4-diphenylcyclohexan-1,4-diol (9a)

Yield: 89% (White solid) as a diastereomeric mixture; M.p.: 184.1–184.3 °C; ¹H NMR (MeOH*d*₄): δ 2.29–2.35 (m, 2H), 2.55–2.60 (m, 2H), 2.93 (brs, 2H), 7.29–7.38 (m, 6H), 7.64 (d, *J* = 7.4 Hz, 4H); ¹³C NMR (CDCl₃): δ 32.1, 75.7 (t, *J* = 21.1 Hz), 116.3 (t, *J* = 25.8 Hz), 127.2, 128.5, 129.0, 138.0; ¹⁹F NMR (MeOH-*d*₄): δ –115.56 to –127.57 (brs, 4F); IR (KBr): *v* 3473, 3097, 3062, 2956, 2922, 2851, 1728, 1497, 1455, 1447, 1240, 1189, 992, 763, 747 cm⁻¹; HRMS (FAB) Calcd for

C18H16F4NaO2 [M+Na]+: 363.0984, Found: 363.0994.

1.8.2. 2,2,3,3-Ttetrafluoro-1-[p-(trifluoromethyl)phenyl)-4-phenylcyclohexan-1,4-diol (9b)

Yield: 87% (Pale yellow solid) as a diastereomeric mixture; M.p.: 160.1–160.4 °C; ¹H NMR (MeOH-*d*₄): δ 2.33–2.38 (m, 2H), 2.57–2.63 (m, 2H), 3.31 (brs, 2H), 7.31–7.40 (m, 3H), 7.67 (t, *J* = 7.4 Hz, 4H), 7.85 (d, *J* = 8.2 Hz, 2H); ¹⁹F NMR (CDCl₃): δ –124.41 to – 112.75 (brs, 4F), –63.31 (s, 3F); ¹³C NMR (Acetone-*d*₆): δ 31.8, 31.9, 76.3 (t, *J* = 21.0 Hz),

76.4 (t, J = 21.1 Hz), 117.5 (tt, J = 259.4, 25.4 Hz), 117.7 (tt, J = 259.6, 25.7 Hz), 124.2 (q, J = 270.7 Hz), 124.4, 128.8, 129.0, 129.3, 129.6, 129.9 (q, J = 32.3 Hz), 140.4, 145.1; IR (KBr): v 3464, 3355, 1621, 1499, 1411, 1330, 1217, 1179, 1116, 1094, 1070, 1017, 995, 842, 744 cm⁻¹; HRMS (FAB) Calcd for C₁₉H₁₅F₇NaO₂ [M+Na]⁺: 431.0858, Found: 431.0850.

1.8.3. 2,2,3,3-Tetrafluoro-1-(*p*-methoxyphenyl)-4-phenylcyclohexan-1,4-diol (9c)

Yield: 62% (White solid) as a diastereomeric mixture; M.p.: 161.5–162.3 °C; ¹H NMR (CDCl₃): δ 2.26–2.38 (m, 2H), 2.52–2.57 (m, 2H), 2.70 (s, 1H), 2.81 (s, 1H), 3.82 (s, 3H), 6.92 (d, *J* = 8.9 Hz, 2H), 7.35–7.42 (m, 3H), 7.54–7.60 (m, 4H); ¹⁹F NMR (CDCl₃): δ –111.90 to –125.45 (brs, 4F); ¹³C NMR (CDCl₃): δ 31.2, 31.3, 55.4, 75.5 (t, *J* = 20.6 Hz), 75.7 (t, *J* = 20.7 Hz), 113.9, 116.2 (tt, *J* = 263.3, 25.3 Hz), 116.5 (tt, *J* = 263.3, 25.4 Hz), 127.2, 128.5,

128.7, 129.0, 129.9, 138.0, 159.9; IR (KBr): *v* 3468, 3318, 2955, 1613, 1515, 1379, 1258, 1188, 1135, 1116, 1088, 992, 860, 753, 704 cm⁻¹; HRMS (FAB) Calcd for C₁₉H₁₈F₄O₃ [M]⁺: 370.1192, Found: 370.1203.

1.8.4. 2,2,3,3-Tetrafluoro-1,4-bis(p-methoxyphenyl)cyclohexan-1,4-diol (9d)

Yield: 84% (White solid) as a diastereomeric mixture; M.p.: 74.9–76.2 °C; ¹H NMR (CDCl₃): δ 2.26–2.32 (m, 2H), 2.48–2.54 (m, 2H), 2.76 (s, 2H), 3.81 (s, 6H), 6.90 (d, *J* = 8.9 Hz, 4H), 7.52 (d, *J* = 8.9 Hz, 4H); ¹³C NMR (CDCl₃): δ 31.2, 55.4, 75.5 (t, *J* = 21.0 Hz), 113.8, 117.3 (tt, J = 261.4, 27.3 Hz), 128.6, 130.0, 159.9; ¹⁹F NMR (CDCl₃): δ –110.85 to –125.14 (brs, 4F); IR (KBr): ν 3445, 2939, 2840, 1611, 1516, 1464, 1302,

1258, 1184, 1120, 1031, 948, 830, 806, 752 cm⁻¹; HRMS (FAB) Calcd for C₂₀H₂₀F₄O₄ [M]⁺: 400.1298, Found: 400.1294.

1.9. Typical procedure for the synthesis of 5,5,6,6-tetrafluoro-1,4-diphenylcyclohexa-1,3-diene (2a)

In a two-necked round-bottomed flask containing a teflon®-coated magnetic stirring bar was placed **9a** (0.034 g, 0.1 mmol) and pyridine (2.0 mL). To the solution was added freshly distilled POCl₃ (0.1 mL, 1.0 mmol) at room temperature. The whole solution was heated at 90 °C for 24 h. After 24 h, the resultant solution was poured into saturated aqueous NH₄Cl solution and acidified by adding 3M HCl solution. The whole solution was extracted with EtOAc three times, and the combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by silica column chromatography to afford the corresponding **2a** in 94% (0.029 g, 0.10 mmol) as a white solid.

1.9.1. 5,5,6,6-Tetrafluoro-1,4-diphenylcyclohexa-1,3-diene (2a)

Yield: 94% (White solid); M.p. = 185 °C (determined by DSC); ¹H NMR (Acetone-*d*₆): δ 6.83 (s, 2H), 7.46–7.50 (m, 6H), 7.59 (d, *J* = 6.8 Hz, 4H); ¹³C NMR (Acetone-*d*₆): δ 115.3 (tt, *J* = 252.2, 27.0 Hz, 2C for CF₂CF₂), 128.2, 129.8, 130.2, 133.8, 135.4 (t, *J* = 23.7 Hz); ¹⁹F NMR

(CDCl₃): *δ*-121.73 (s, 4F); IR (KBr): *ν* 3051, 2962, 2924, 1966, 1910, 1817, 1571, 1494, 1446, 1377, 1355, 1078, 1055, 1028, 768 cm⁻¹; HRMS (FAB) Calcd for C₁₈H₁₂F₄ [M]⁺: 304.0875, Found: 304.0882.

1.9.2. 5,5,6,6-Tetrafluoro-1-[p-(trifluoromethyl)phenyl)]-4-phenylcyclohexa-1,3-diene (2b)

F₃C

Yield: 73% (Pale yellow solid); M.p. = 98 °C (determined by DSC); ¹H NMR (CDCl₃): δ 6.54 (d, *J* = 6.1 Hz, 1H), 6.60 (d, *J* = 6.1 Hz, 1H), 7.42–7.45 (m, 3H), 7.52–7.54 (m, 2H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.68 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (CDCl₃): δ 113.7 (tt, *J*

= 253.5, 27.1 Hz), 113.8 (tt, *J* = 253.8, 27.8 Hz), 122.7, 125.6, 125.70, 125.74, 127.5, 127.7, 127.8, 128.8, 129.6, 131.1 (q, *J* = 54.5 Hz), 132.7, 134.0 (t, *J* = 22.0 Hz), 136.5 (t, *J* = 22.3 Hz); ¹⁹F NMR (CDCl₃): δ -63.30 (s, 3F), -121.67 (d, *J* = 6.9 Hz, 2F), -121.88 (d, J = 6.9 Hz, 2F); IR (KBr): *v* 3108, 3087, 3073, 2938, 2646, 1951, 1928, 1619, 1499, 1448, 1377, 1199, 959, 863, 743 cm⁻¹; HRMS (FAB) Calcd for C₁₉H₁₁F₇ [M]⁺: 372.0749, Found: 372.0750.

1.9.3. 5,5,6,6-Tetrafluoro-1-(p-methoxyphenyl)-4-phenylcyclohexa-1,3-diene (2c)

Yield: 72% (Pale yellow solid); M.p. = 165 °C (determined by DSC); ¹H NMR (CDCl₃): δ 3.85 (s, 3H), 6.44 (d, *J* = 6.4 Hz, 1H), 6.50 (d, *J* = 6.4 Hz, 1H), 6.95 (d, *J* = 8.4 Hz, 2H), 7.37–7.44 (m, 3H), 7.46–7.52 (m, 4H); ¹³C NMR (CDCl₃): δ 55.5, 114.0

(tt, *J* = 253.2, 26.7 Hz), 114.1 (tt, *J* = 253.2, 26.7 Hz), 114.2, 124.4, 125.4, 126.4, 127.3, 128.7, 128.8, 129.1, 133.1, 134.4 (t, *J* = 22.3 Hz), 134.9 (t, *J* = 23.1 Hz, CH=C-Ar), 160.6; ¹⁹F NMR (CDCl₃): δ -121.71 (d, *J* = 42.9 Hz, 4F); IR (KBr): *v* 3048, 2967, 2940, 2841, 1605, 1516, 1354, 1285, 1254, 1186, 1152, 1098, 1054, 1027, 790 cm⁻¹; HRMS (FAB) Calcd for C₁₉H₁₄F₄O [M]⁺: 334.0981, Found: 334.0977.

1.9.4. 5,5,6,6-Tetrafluoro-1,4-bis(p-methoxyphenyl)cyclohexa-1,3-diene (2d)

Yield: 60% (Pale yellow solid); M.p. = 208 °C (determined by DSC); ¹H NMR
(CDCl₃): δ 3.85 (s, 6H), 6.42 (s, 2H), 6.93–6.95 (m, 4H), 7.46 (d, *J* = 8.6 Hz, 4H); ¹³C NMR (CDCl₃): δ 55.5, 114.2, 114.3 (tm, *J* = 242.2 Hz), 124.7, 125.5,

128.7, 134.1, 160.5; ¹⁹F NMR (CDCl₃,): *δ*-121.49 (s, 4F); IR (KBr): *ν* 3045, 2967, 2939, 2841, 1604, 1513, 1459, 1441, 1250, 1183, 1155, 1098, 1053, 1028, 816, 785 cm⁻¹; HRMS (FAB) Calcd for C₂₀H₁₆F₄O₂ [M]⁺: 364.1086, Found: 364.1083.

Figure S1. ¹H NMR spectrum of 2a (Acetone-d₆, 400 MHz)

Figure S2. ¹³C NMR spectrum of 2a (Acetone-d₆, 100 MHz)

Figure S3. ¹⁹F NMR spectrum of 2a (Acetone-d₆, 376 MHz)

Figure S4. ¹H NMR spectrum of 2b (CDCl₃, 400 MHz)

Figure S5. ¹³C NMR spectrum of 2b (CDCl₃, 100 MHz)

Figure S6. ¹⁹F NMR spectrum of 2b (CDCl₃, 376 MHz)

Figure S7. ¹H NMR spectrum of 2c (CDCl₃, 400 MHz)

Figure S8. ¹³C NMR spectrum of 2c (CDCl₃, 100 MHz)

Figure S9. ¹⁹F NMR spectrum of 2c (CDCl₃, 376 MHz)

Figure S10. 1H NMR spectrum of 2d (CDCl₃, 400 MHz)

Figure S11. ¹³C NMR spectrum of 2d (CDCl₃, 100 MHz)

Figure S12. ¹⁹F NMR spectrum of 2d (CDCl₃, 376 MHz)

3. X-ray Crystallographic Analysis

Single crystal X-ray diffractions were recorded on an XtaLab AFC11 diffractometer (Rigaku). The reflection data were integrated, scaled, and averaged using CrysAlisPro (ver. 1.171.39.43a, Rigaku). Empirical absorption corrections were applied using the SCALE 3 ABSPACK scaling algorithm (CrysAlisPro). The structure were identified by a direct method (SHELXT-2018/2) and refined using a full matrix least square method (SHELXL-2014/7) visualized by Olex2. The crystallographic data were deposited into the Cambridge Crystallographic Data Centre (CCDC) database. These data can be obtained free of charge from the CCDC via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

	2a	2b	2c	2d
CCDC #	2144835	2144836	2144837	2144838
Empirical Formula	$C_{18}H_{12}F_4$	C19H11F7	C19H14F4O	$C_{20}H_{16}F_4O_2$
Formula weight	304.28	372.28	334.40	364.33
Temperature [K]	299	298	173	173
Crystal Color /	Colourless / Block	Colourless / Block	Yellow / Block	Colourless / Block
Habit				
Crystal Size [mm]	0.64 x 0.46 x 0.24	0.55 x 0.42 x 0.18	0.45 x 0.35 x 0.27	0.37 x 0.27 x 0.17
Crystal System	Orthorhombic	Triclinic	Orthorhombic	Monoclinic
Space Group	Pbcn	P –1	Pbca	C 2/c
a [Å]	15.9027(7)	6.5391(2)	9.0280(5)	19.8807(11)
<i>b</i> [Å]	9.8059(3)	8.9883(3)	35.5954(16)	9.3734(5)
<i>c</i> [Å]	9.1193(4)	14.4828(5)	9.5477(5)	8.9806(5)
α [°]	90	94.851(3)	90	90
β [°]	90	94.118(3)	90	94.599(5)
γ[°]	90	109.620(3)	90	90
V [Å ³]	1422.07(10)	794.37(5)	3068.2(3)	1668.14(16)
Ζ	4	2	8	4
$R [F^2 > 2\sigma(F^2)]^{[a]}$	0.0441	0.0424	0.0405	0.0350
$wR_2 (F^2)$ [b]	0.1330	0.1210	0.1497	0.0889

Table S1. Crystallographic data of 2a–d

 $[a] R = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. [b] wR = \{[\Sigma w(|F_{o}| - |F_{c}|)] / \Sigma w |F_{o}|\}^{1/2}.$

(a)

Figure S13. ORTEP Drawing of (a) 2a, (b) 2b, (c) 2c, and (d) 2d.

4. DFT Calculation

Figure S14. Optimized geometry, HOMO-LUMO difference distribution, and electron-density difference between ground and excited states for **2a**–**d**.

Table S2. Energy (hartree) and dipole moment (debye) of 2a-d at S0 state. (CPCM for CHCl3)

	E(RCAM-B3LYP) [hartree]		Dipole mom	nent (debye)	
2a	-1092.06854376	X= 0.0000	Y= 4.0414	Z=0.0001	Tot= 4.0414
2b	-1429.05470941	X= 3.5042	Y= -4.2261	Z=0.1373	Tot= 5.4916
2c	-1206.55353350	X= 1.5588	Y=-5.1445	Z=0.6751	Tot= 5.4177
2d	-1321.03851299	X= 0.0843	Y=-4.0323	Z=1.7336	Tot= 4.3899

Table S3. Theoretical vertical transition behavior calculated by TD-DFT calculation. (CPCM for CHCl₃)

	Transition	Transition Energy (eV)	Theoretical Absorption	Oscillator strength
			(nm)	/ f
2a	$HOMO \rightarrow LUMO$	3.5494	349.31	0.8058
2b	$HOMO \rightarrow LUMO$	3.5643	347.85	0.8556
2c	$HOMO \rightarrow LUMO$	3.4014	364.51	0.8688
2d	$HOMO \rightarrow LUMO$	3.3025	375.43	0.9498

No	Atom	Туре	Coord	inates (Angsti	coms)
INO.	No.		х	у	Z
1	6	0	-5.072078	-0.467469	-0.749409
2	6	0	-3.681747	-0.481744	-0.773343
3	6	0	-2.946772	0.419431	0.010668
4	6	0	-3.642238	1.321932	0.82656
5	6	0	-5.032842	1.333721	0.848262
6	6	0	-5.753364	0.439639	0.059468
7	1	0	-5.627835	-1.171186	-1.371322
8	1	0	-3.161341	-1.188224	-1.419241
9	1	0	-3.08622	2.007791	1.467591
10	1	0	-5.556584	2.040254	1.494359
11	6	0	-1.470298	0.443499	-0.034401
12	6	0	-0.729811	1.564237	0.030015
13	6	0	0.729782	1.564253	-0.030055
14	1	0	-1.225439	2.532665	0.108144
15	6	0	1.47029	0.44353	0.034381
16	1	0	1.22538	2.532694	-0.108204

Table S4. Cartesian coordinate for 2a at the optimized geometry in S₀ state.

NT-	Atom	Туре	Coord	inates (Angstı	roms)	19	6	0	2.347431	-0.622456
INO.	No.		x	у	Z	20	6	0	3.763476	1.175283
1	6	0	-6.384927	-0.362438	-0.773512	21	1	0	1.848957	1.909961
2	6	0	-4.995441	-0.414277	-0.789207	22	6	0	3.735409	-0.648595
3	6	0	-4.241646	0.464594	0.00219	23	1	0	1.803246	-1.31883
4	6	0	-4.916993	1.383301	0.816911	24	6	0	4.444687	0.247873
5	6	0	-6.306791	1.432001	0.830793	25	1	0	4.318546	1.876974
6	6	0	-7.046115	0.560023	0.034653	26	1	0	4.269413	-1.364888
7	1	0	-6.955749	-1.048802	-1.401055	27	6	0	-2.052776	-0.857725
8	1	0	-4.490599	-1.132498	-1.43446	28	6	0	-0.608876	-0.900592
9	1	0	-4.346651	2.052115	1.463301	29	9	0	-2.720593	-1.9006
10	1	0	-6.815323	2.150077	1.476229	30	9	0	-0.680973	-1.166099
11	6	0	-2.765068	0.449262	-0.033979	31	9	0	0.003834	-1.970755
12	6	0	-1.995673	1.549714	0.04112	32	9	0	-1.99241	-1.109386
13	6	0	-0.536484	1.509228	-0.010534	33	1	0	-8.136684	0.595368
14	1	0	-2.464608	2.530983	0.120826	34	6	0	5.941575	0.188606
15	6	0	0.171235	0.367841	0.05362	35	9	0	6.385339	-0.638889
16	1	0	-0.014176	2.464256	-0.080298	36	9	0	6.464573	-0.259162
17	6	0	1.646741	0.30579	0.024567	37	9	0	6.488341	1.392639
18	6	0	2.37534	1.198492	-0.772503					

Table S5. Cartesian coordinate for **2b** at the optimized geometry in S₀ state.

N.	Atom	Туре	Coord	inates (Angstr	roms)		19	6	0	2.934888	0.760261	-0.82121
INO.	No.		x	у	Z		20	6	0	4.40099	-1.11488	0.628583
1	6	0	-5.779803	0.261653	0.851783		21	1	0	2.506587	-1.919275	1.219771
2	6	0	-4.391088	0.334871	0.845344		22	6	0	4.316772	0.811021	-0.825307
3	6	0	-3.637729	-0.492167	-0.000635		23	1	0	2.376561	1.494068	-1.401567
4	6	0	-4.31487	-1.381104	-0.84643		24	6	0	5.064976	-0.126679	-0.101688
5	6	0	-5.703869	-1.452594	-0.837176		25	1	0	4.951977	-1.848797	1.21379
6	6	0	-6.442121	-0.631974	0.012731		26	1	0	4.850089	1.575692	-1.391146
7	1	0	-6.349173	0.908233	1.521623		27	6	0	7.214393	-0.912791	0.545275
8	1	0	-3.885331	1.029475	1.51531		28	1	0	7.052457	-1.944499	0.192779
9	1	0	-3.746533	-2.008509	-1.534812		29	1	0	8.253585	-0.623264	0.351512
10	1	0	-6.212927	-2.147639	-1.507088		30	1	0	7.019968	-0.865192	1.629149
11	6	0	-2.160859	-0.453834	0.009946		31	6	0	-1.464037	0.849161	0.2969
12	6	0	-1.374461	-1.535786	-0.132337		32	6	0	-0.029547	0.940266	-0.263852
13	6	0	0.084345	-1.477729	-0.107224		33	9	0	-2.155472	1.909452	-0.194945
14	1	0	-1.831455	-2.51887	-0.253085		34	9	0	-0.128439	1.270787	-1.589742
15	6	0	0.777521	-0.324202	-0.121591		35	9	0	0.57261	1.993518	0.346223
16	1	0	0.62057	-2.427397	-0.099201		36	9	0	-1.385865	1.038424	1.651939
17	6	0	2.248684	-0.233174	-0.099755		37	8	0	6.409988	0.010795	-0.166967
18	6	0	3.009196	-1.156231	0.623344	-	38	1	0	-7.532097	-0.68454	0.017205

Table S6. Cartesian coordinate for **2c** at the optimized geometry in S₀ state.

Ne	Atom	Туре	Coord	inates (Angstr	oms)		21	1	0	-3.182204	-1.910344	-1.253963
INO.	No.		х	у	Z		22	6	0	-5.04599	0.782876	0.791621
1	6	0	5.091381	0.373985	-0.696921		23	1	0	-3.120299	1.47597	1.403977
2	6	0	3.69999	0.424788	-0.702445		24	6	0	-5.775398	-0.153703	0.047857
3	6	0	2.931702	-0.445868	0.077796		25	1	0	-5.628039	-1.861402	-1.282756
4	6	0	3.612102	-1.373214	0.885269		26	1	0	-5.594107	1.537286	1.357141
5	6	0	4.993785	-1.433514	0.900079		27	8	0	7.093307	-0.694034	0.191793
6	6	0	5.748715	-0.560221	0.106534		28	8	0	-7.122799	-0.028436	0.094731
7	1	0	5.648314	1.066137	-1.325733		29	6	0	-7.908089	-0.952592	-0.63747
8	1	0	3.208395	1.153131	-1.34646		30	1	0	-7.741234	-1.986144	-0.292641
9	1	0	3.04554	-2.046109	1.530762		31	1	0	-8.952717	-0.674936	-0.455804
10	1	0	5.520977	-2.14734	1.534057		32	1	0	-7.698986	-0.892951	-1.718055
11	6	0	1.457994	-0.4223	0.041893		33	6	0	7.903744	0.173087	-0.58199
12	6	0	0.675429	-1.511472	0.158081		34	1	0	7.715722	0.045661	-1.660537
13	6	0	-0.782656	-1.462483	0.113951		35	1	0	7.741351	1.228278	-0.308097
14	1	0	1.135984	-2.493703	0.270925		36	1	0	8.941243	-0.102622	-0.36082
15	6	0	-1.486346	-0.315203	0.129579		37	6	0	0.752994	0.878823	-0.238748
16	1	0	-1.311647	-2.416032	0.087591		38	6	0	-0.691747	0.952684	0.298291
17	6	0	-2.95802	-0.236309	0.086628		39	9	0	1.425114	1.940143	0.278317
18	6	0	-3.700105	-1.15786	-0.657177		40	9	0	-0.617277	1.271344	1.629237
19	6	0	-3.66367	0.743582	0.807813		41	9	0	-1.291148	2.008698	-0.310774
20	6	0	-5.09215	-1.128628	-0.682256	-	42	9	0	0.697273	1.084942	-1.592567

Table S7. Cartesian coordinate for 2d at the optimized geometry in S₀ state.

5. Photophysical Characteristics

5-1. Solution state

Figure S15. UV-vis and PL spectra of **2a**–**d** in CHCl₃ solution. Concentration: 1.0×10^{-5} mol L⁻¹ for UV-vis and PL measurement.

Figure S16. PL decay profiles of (a) **2a** ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 437 \text{ nm}$), (b) **2b** ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 437 \text{ nm}$), (c) **2c** ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 468 \text{ nm}$), and (d) **2d** ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 467 \text{ nm}$) in CHCl₃ solution.

Table S8. Photophysical data of 2a-d in CHCl₃ solution (concentration: 1.0 x 10⁻⁵ mol L⁻¹)

	1 2		1		/	
	λ _{abs} [nm] (ε, 10 ³ [L mol ⁻¹ cm ⁻¹))	$\lambda_{\rm PL}$ [nm]	$arPhi_{ ext{PL}}$	$\pi_{\rm PL}[ns]$	<i>k</i> r [10 ⁸ , s ⁻¹]	<i>k</i> nr [10 ⁸ , s ⁻¹]
2a	341 (21.6)	437	0.31	1.1	2.8	6.3
2b	339 (19.6)	437	0.03	0.88	0.34	11.0
2c	360 (34.0)	462	0.01	1.1	0.09	9.0
2d	371 (19.4)	467	0.11	0.64	1.7	13.9
		.				

Radiation rate constant: $k_r = \Phi_{PL}/\tau_{PL}$, Nonradiation rate constant: $k_{nr} = (1 - \Phi_{PL})/\tau_{PL}$

Figure S17. UV-vis and PL spectra of **2a** and **2b** in various solvent (toluene, CHCl₃, acetone, and MeCN). Concentration: 1.0×10^{-5} mol L⁻¹ for UV-vis and PL measurement. *The short-wavelength PL band for **2b** at around 400 nm is maybe originated from the impurities.

Figure S18. Excitation spectra of 2b in (a) acetone and (b) MeCN.

Figure S19. PL decay profiles monitored at λ_{PL} of **2a** in various solvent: (a) toluene ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 436 \text{ nm}$), (b) CHCl₃($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 437 \text{ nm}$), (c) acetone ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 435 \text{ nm}$), and (d) MeCN ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 432 \text{ nm}$).

Figure S20. PL decay profiles monitored at λ_{PL} of **2b** in various solvent: (a) toluene ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 446 \text{ nm}$), (b) CHCl₃ ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 437 \text{ nm}$), (c) acetone ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 438 \text{ nm}$), and (d) MeCN ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 442 \text{ nm}$).

Figure S21. PL decay profiles monitored at λ_{PL} of 2b in (a) acetone and (b) MeCN for short-wavelength PL peak.

	Table S9. Photo	physical	data of	f 2a and	2b in	various	solvent
--	-----------------	----------	---------	-----------------	--------------	---------	---------

	Dielectric	Reflective	Δf	Vabs	ИРL	Δv
_	constant (ɛ)	index (n)		[cm ⁻¹]	[cm ⁻¹]	[cm ⁻¹]
2a						
Toluene	2.381	1.496	0.0136	29155	22831	6324
CHCl ₃	4.806	1.443	0.149	29326	22883	6443
Acetone	20.56	1.359	0.284	29499	22989	6510
MeCN	35.94	1.344	0.305	29412	22936	6476
2b						
Toluene	2.381	1.496	0.0136	29070	22422	6648
CHCl ₃	4.806	1.443	0.149	29499	22883	6616
Acetone	20.56	1.359	0.284	29674	22831	6843
MeCN	35.94	1.344	0.305	29674	22624	7050
$\epsilon = 1$	$n^2 - 1$					

 $\Delta f = \frac{1}{2\varepsilon + 1} - \frac{1}{2n^2 + 1}$

Figure S22. Lippert-Mataga plot of 2a and 2b calculated from photophysical behavior in various solvent.

Figure S23. UV-vis and PL spectra of **2c** and **2d** in various solvent (toluene, CHCl₃, acetone, and MeCN). Concentration: 1.0×10^{-5} mol L⁻¹ for UV-vis and PL measurement. *The short-wavelength PL band at around 400 nm for **2c** is maybe originated from the impurities.

Figure S24. Excitation spectra of 2b in (a) acetone and (b) MeCN.

Figure S25. PL decay profiles monitored at λ_{PL} of **2c** in various solvent: (a) toluene ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 468 \text{ nm}$), (b) CHCl₃ ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 468 \text{ nm}$), (c) acetone ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 468 \text{ nm}$), and (d) MeCN ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 469 \text{ nm}$).

Figure S26. PL decay profiles monitored at λ_{PL} of **2c** in (a) acetone and (b) MeCN for short-wavelength PL peak.

Figure S27. PL decay profiles monitored at λ_{PL} of **2d** in various solvent: (a) toluene ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 459 \text{ nm}$), (b) CHCl₃ ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 467 \text{ nm}$), (c) acetone ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 470 \text{ nm}$), and (d) MeCN ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 476 \text{ nm}$).

Table S10. Photophysical data of 2c and 2d in various solvent.

	Dielectric	Reflective	Δf	Vabs	V PL	Δv
	constant (ɛ)	index (n)		[cm ⁻¹]	[cm ⁻¹]	[cm ⁻¹]
2c						
Toluene	2.381	1.496	0.0136	27628	21736	5885
CHCl ₃	4.806	1.443	0.149	27778	21645	6133
Acetone	20.56	1.359	0.284	27855	21097	6758
MeCN	35.94	1.344	0.305	28090	21097	6993
2d						
Toluene	2.381	1.496	0.0136	26667	21786	4881
CHCl ₃	4.806	1.443	0.149	26954	21413	5541
Acetone	20.56	1.359	0.284	27027	21277	5750
MeCN	35.94	1.344	0.305	27100	21008	6092
$\epsilon = 1$	$n^2 - 1$					
$\Delta f = \frac{1}{2\varepsilon + 1}$	$\frac{1}{2n^2+1}$					

Figure S28. Lippert-Mataga plot of 2c and 2d calculated from photophysical behavior in various solvent.

5-3. Crystalline state

Figure S29. Excitation and PL spectra of (a) 2a, (b) 2b, (c) 2c, and (d) 2d in crystal.

Figure S30. PL decay profiles of (a) **2a** ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 437 \text{ nm}$), (b) **2b** ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 439 \text{ nm}$), (c) **2c** ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 464 \text{ nm}$), and (d) **2d** ($\lambda_{ex} = 340 \text{ nm}$. $\lambda_{PL} = 474 \text{ nm}$) in crystal.

Figure S31. PL spectra of 2b, 2c, and 2d in the PMMA film (1 wt%).

Table S11.	Photophy	vsical data	of 2a-d ir	PMMA	film
	1 notopn	y sicai data		L T TATTATT 7	111111

1% PMMA film	$\lambda_{ m PL}$	$arPhi_{ m PL}$
2a	_	0
2b	436 nm	0.62
2c	464 nm	0.51
2d	472 nm	0.16

(b) **2c** (a) **2a** ୦% 10%–70% 0% - 10%-70% - 80% 80% - 90% PL intensity PL intensity 500 550 6 Wavelength [nm] 500 550 60 Wavelength [nm]

Figure S32. PL spectra and AIE characteristics of 2a and 2c in THF/H₂O mixed solvent system.

	2a ($\lambda_{ex} = 296 \text{ nm}$)		3c ($\lambda_{ex} = 347 \text{ nm}$)		
Water ratio [%]	$\lambda_{ ext{PL}}$ [nm]	PL intensity / $\Phi_{ m PL}$	$\lambda_{\rm PL}$ [nm]	PL intensity $/ \Phi_{PL}$	
0	436	451.36 / 0.186	469	19.65 / 0.011	
10	437	335.87 / 0.141	479	18.27 / 0.011	
20	437	312.72 / 0.133	480	17.13 / 0.010	
30	438	293.78 / 0.127	479	16.77 / 0.010	
40	437	275.74 / 0.120	481	17.28 / 0.010	
50	437	255.01 / 0.113	484	17.34 / 0.010	
60	439	240.97 / 0.107	485	17.23 / 0.010	
70	438	212.48 / 0.096	488	17.72 / 0.010	
80	430	2172.8 / 1.0	455	1253.8 / 0.545	
90	439	1181.3 / 0.71	457	518.9 / 0.253	

Table S12. Photophysical data of 2a and 2c in THF/H ₂ O mixed solvent syst
--