Supporting Information

Effect of fluorine atoms in flexible chains on the phase transitions and

photophysical behavior of D-π-A-type 4-alkoxy-4´-cyanodiphenylacetylene

Shigeyuki Yamada,*^a Keigo Yoshida, ^a Tsuneaki Sakurai, ^a Mitsuo Hara, ^b Tsutomu Konno ^a

^a Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

^b Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

*Corresponding author.

E-mail: syamada@kit.ac.jp

Table of contents

Experimental	•••••	S-2
NMR spectra	•••••	S-7
Theoretical calculation	•••••	S-17
Cartesian coordinate	•••••	S-20
Phase transition behavior	•••••	S-23
Photophysical behavior		S-27
In various solvent for 1a	•••••	S-28
In various solvent for 1b	•••••	S-30
In various solvent for 1c	•••••	S-32
In crystalline phase	•••••	S-34
Powder XRD pattern of 1a	I-C	S-35
In LC phase	•••••	S-36

Experimental

General

All reactions were carried out using dried glassware with a magnetic stirrer bar. All chemicals were of reagent grade and where necessary were purified in the usual manner prior to use. Column chromatography was carried out on silica gel (Wakogel® 60N, 38–100 μ m), and thin-layer chromatography (TLC) analysis was performed on silica gel TLC plates (Merck, silica gel 60F₂₅₄). ¹H and ¹³C NMR spectra were obtained using a Bruker AVANCE III 400 NMR spectrometer (¹H: 400 MHz and ¹³C: 100 MHz) in chloroform-*d* (CDCl₃) solution, and the chemical shifts are reported in parts per million (ppm) using the residual proton in the NMR solvent. ¹⁹F NMR (376 MHz) spectra were also obtained with a Bruker AVANCE III 400 NMR spectrometer in CDCl₃ with hexafluorobenzene (C₆F₆, $\delta_{\rm F} = -163$ ppm) as an internal standard. Infrared (IR) spectra were acquired using the KBr method and a JASCO FT/IR-4100 type A spectrometer; all spectra were reported in wavenumbers (cm⁻¹). High resolution mass spectra (HRMS) were recorded using a JEOL JMS-700MS spectrometer and the fast atom bombardment (FAB) method. Melting temperature (*T*_m) and clearing temperature (*T*_c) were determined from onset values obtained via differential scanning calorimetry.

Preparation of 2a from 4-bromo-1-decyloxybenzene

In a two-necked round-bottomed flask, equipped with a Teflon®-coated stirring bar, was placed 4-bromo-1decyloxybenzene (7.24 g, 28.2 mmol), Cl₂Pd(PPh₃)₂ (1.01 g, 1.48 mmol), PPh₃ (0.76 g, 1.48 mmol), and Et₃N (100 mL). To the solution was added CuI (0.31 g, 2.96 mmol) and trimethylsilylacetylene (4.96 g, 50.5 mmol), and the solution was stirred at 80 °C for 21 h. After being stirred for 21 h, precipitate formed during the reaction was separated by atmospheric filtration, and the filtrate was poured into saturated aqueous NH₄Cl solution. The crude product was extracted with Et₂O (50 mL) three times. The combined organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered under atmospheric pressure, and evaporated under reduced pressure using a rotary evaporator. After flash column chromatography using hexane/EtOAc 40/1 (v/v) mixed solvent as an eluent, the corresponding coupling product was obtained in 40% (3.04 g, 11.1 mmol) as yellow oil, which was used for the following reaction without further purification; In a round-bottomed flask was placed the above prepared TMS-terminated phenylacetylene (3.04 g, 11.1 mmol) and potassium carbonate (1.84 g, 13.3 mmol), and MeOH (55 mL). The whole was stirred at room temperature for 3 h. The resultant solution was poured into aqueous NH₄Cl solution. The crude product was extracted with Et₂O (50 mL) three times. The combined organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered under atmospheric pressure, and evaporated under reduced pressure using a rotary evaporator. The residue was subjected to silica-gel column chromatography using hexane/EtOAc 40/1 (v/v) mixed solvent as an eluent, producing the precursor 2a in 53% (1.09 g, 5.9 mmol) as a white solid.

4-Decyloxyphenylacetylene (2a)

Yield: 53% (white solid); ¹H NMR (CDCl₃): δ 0.89 (t, *J* = 7.2 Hz, 3H), 1.22–1.39 (m, 12H), 1.45 (quin, *J* = 7.6 Hz, 2H), 1.78 (quin, *J* = 8.0 Hz, 2H), 2.99 (s, 1H), 3.95 (t, *J* = 6.4 Hz, 2H), 6.83 (d, *J* = 8.8 Hz, 2H), 7.42 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (CDCl₃): δ 14.1, 22.6, 26.0, 29.1, 29.3, 29.4, 29.6, 31.9, 67.9, 75.6, 83.7, 113.8, 114.3, 133.4, 159.4 (one alkyl peak was overlapped with other peaks.); All physical data are fully in accordance with reported ones.[1]

Synthesis of 1a via Sonogashira cross-coupling reaction of 4-bromobenzonitrile with 4-decyloxyphenylacetylene

$$C_{10}H_{21}O - H + Br - CN \xrightarrow{Cl_2Pd(PPh_3)_2 (5 \text{ mol}\%)}_{PPh_3 (5 \text{ mol}\%)} C_{10}H_{21}O - H + CN \xrightarrow{Cl_2Pd(PPh_3)_2 (5 \text{ mol}\%)}_{Et_3N, 80 \ ^\circ C, 21 \ h} C_{10}H_{21}O - H + CN$$

In a two-necked round-bottomed flask, equipped with a Teflon®-coated stirring bar, was placed 4bromobenzonitrile (1.00 g, 5.5 mmol), $Cl_2Pd(PPh_3)_2$ (0.19 g, 0.28 mmol), PPh₃ (0.072 g, 0.28 mmol), and Et₃N (35 mL). To the solution was added CuI (0.105 g, 0.56 mmol) and 4-decyloxyphenylacetylene (2.58 g, 10 mmol), and the solution was stirred at 80 °C for 21 h. After being stirred for 21 h, precipitate formed during the reaction was separated by atmospheric filtration, and the filtrate was poured into saturated aqueous NH₄Cl solution. The crude product was extracted with Et₂O (50 mL) three times. The combined organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered under atmospheric pressure, and evaporated under reduced pressure using a rotary evaporator. The residue was subjected to silica-gel column chromatography using hexane/EtOAc 20/1 (v/v) mixed solvent as an eluent, followed by recrystallization from CH₂Cl₂/methanol (v/v = 1/1), producing the coupling product **1a** in 56% (1.11 g, 3.1 mmol) as a white solid.

4-Decyloxy-4'-cyanodiphenylacetylene (1a)

Yield: 56% (white solid); M.p.: $T_{\rm m} = 63$ °C, $T_{\rm c} = 92$ °C (cooling process); ¹H NMR (CDCl₃): δ 0.89 (t, J = 7.2 Hz, 3H), 1.22–1.40 (m, 12H), 1.40–1.52 (m, 2H), 1.79 (quin, J = 8.0 Hz, 2H), 3.97 (t, J = 6.4 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃): δ 14.1, 22.6, 26.0, 29.1, 29.29, 29.34, 29.5, 31.9, 68.1, 86.6, 94.2, 110.9, 113.9, 114.6, 118.6, 128.7, 131.8, 132.0, 133.3, 159.9 (one alkyl peak was overlapped with other peaks.); IR (KBr): v3039, 2954, 2870, 2236, 2211, 1569, 1305, 1270, 1024, 836 cm⁻¹; HRMS (FAB) Calcd for (M⁺) C₂₅H₂₉NO: 359.2249, Found: 359.2244.

Preparation of 2b from 4-bromo-1-(7,7,8,8,9,9,10,10,10-nonafluorodecyloxy)benzene

In a two-necked round-bottomed flask, equipped with a Teflon®-coated stirring bar, was placed 4-bromo-1-(7,7,8,8,9,9,10,10,10-nonafluorodecyloxy)benzene (4.81 g, 10.2 mmol), Cl₂Pd(PPh₃)₂ (0.35 g, 0.51 mmol), PPh₃ (0.13 g, 0.51 mmol), and Et₃N (36 mL). To the solution was added CuI (0.19 g, 1.02 mmol) and

^[1] J.D. Wood, J.L. Jellison, A.D. Finke, L. Wang, L.N. Plunkett, J. Am. Chem. Soc. 2012, 38, 15783.

trimethylsilylacetylene (1.76 g, 18.4 mmol), and the solution was stirred at 80 °C for 21 h. After being stirred for 21 h, precipitate formed during the reaction was separated by atmospheric filtration, and the filtrate was poured into saturated aqueous NH₄Cl solution. The crude product was extracted with Et₂O (50 mL) three times. The combined organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered under atmospheric pressure, and evaporated under reduced pressure using a rotary evaporator. After flash column chromatography using hexane/EtOAc 20/1 (v/v) mixed solvent as an eluent, the corresponding coupling product was obtained in 45% (2.24 g, 4.5 mmol) as yellow oil, which was used for the following reaction without further purification; In a round-bottomed flask was placed the above prepared TMS-terminated phenylacetylene (2.24 g, 4.5 mmol) and potassium carbonate (0.75 g, 5.4 mmol), and MeOH (23 mL). The whole was stirred at room temperature for 3 h. The resultant solution was poured into aqueous NH₄Cl solution. The crude product was extracted with Et₂O (50 mL) three times. The combined organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered under atmospheric pressure, and evaporated under reduced pressure using a rotary evaporator. The residue was extracted with Et₂O (50 mL) three times. The combined organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered under atmospheric pressure, and evaporated under reduced pressure using a rotary evaporator. The residue was subjected to silica-gel column chromatography using hexane/EtOAc 20/1 (v/v) mixed solvent as an eluent, producing 4-(7,7,8,8,9,9,10,10,10-nonafluorodecyloxy)phenylacetylene (**2b**) in 43% (0.82 g, 2.0 mmol) as a colorless oil.

4-(7,7,8,8,9,9,10,10,10-Nonafluorodecyloxy)phenylacetylene (2b)

Yield: 43% (colorless oil); ¹H NMR (CDCl₃): δ 1.40–1.58 (m, 4H), 1.65 (quin, J = 7.2 Hz, 2H), 1.80 (quin, J = 6.8 Hz, 2H), 2.01–2.16 (m, 2H), 3.00 (s, 1H), 3.96 (t, J = 6.4 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 7.43 (d, J = 8.8 Hz, 2H); ¹³C NMR (CDCl₃): δ 20.0, 25.7, 28.8, 28.9, 30.7 (t, J = 21.9 Hz), 67.7, 75.7, 83.7, 114.1, 114.4, 133.6, 159.4 (Carbon signals for C₄F₉ moiety could not be properly identified because they were complicatedly divided by the coupling with the fluorine nucleus.); ¹⁹F NMR (CDCl₃, C₆F₆): δ –82.31 (t, J = 9.4 Hz, 3F), –115.9 (quin, J = 16.2 Hz, 2F), –125.6 to –125.8 (m, 2F), 127.32 (t, J = 12.0 Hz, 2F); IR (neat): v 2946, 2870, 2108, 1607, 1508, 1471, 1356, 1289, 1171, 879 cm⁻¹; HRMS (FAB) Calcd for (M⁺) C₁₈H₁₇F₉O: 420.1136, Found: 420.1131.

Synthesis of 1b via Sonogashira cross-coupling reaction of 4-bromobenzonitrile with 4-decyloxyphenylacetylene

In a two-necked round-bottomed flask, equipped with a Teflon®-coated stirring bar, was placed 4bromobenzonitrile (0.33 g, 1.8 mmol), $Cl_2Pd(PPh_3)_2$ (0.040 g, 0.050 mmol), PPh₃ (0.013 g, 0.050 mmol), and Et₃N (3.3 mL). To the solution was added CuI (0.020 g, 0.10 mmol) and 4-(7,7,8,8,9,9,10,10,10nonafluorodecyloxy)phenylacetylene (**2b**) (0.42 g, 1.0 mmol), and the solution was stirred at 80 °C for 21 h. After being stirred for 21 h, precipitate formed during the reaction was separated by atmospheric filtration, and the filtrate was poured into saturated aqueous NH₄Cl solution. The crude product was extracted with Et₂O (20 mL) three times. The combined organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered under atmospheric pressure, and evaporated under reduced pressure using a rotary evaporator. The residue was subjected to silica-gel column chromatography using hexane/EtOAc 20/1 (v/v) mixed solvent as an eluent, followed by recrystallization from CH₂Cl₂/methanol (v/v = 1/1), producing the coupling product **1b** in 66% (0.34 g, 0.66 mmol) as a white solid.

4-Nonafluorodecyloxy-4'-cyanodiphenylacetylene (1b)

Yield: 66% (white solid); M.p.: $T_{\rm m} = 61$ °C, $T_{\rm c} = 138$ °C (cooling process); ¹H NMR (CDCl₃): δ 1.40–1.52 (m, 2H), 1.65 (quin, J = 8.0 Hz, 2H), 1.82 (quin, J = 7.6 Hz, 2H), 2.08 (tt, J = 18.0, 8.0 Hz, 2H), 3.99 (t, J = 6.4 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 7.47 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃): δ 20.1, 25.7, 28.8, 28.9, 30.7 (t, J = 22.7 Hz), 67.8, 86.7, 94.1, 111.0, 114.1, 114.6, 118.6, 128.7, 131.8, 132.0, 133.4, 159.8 (Carbon signals for C₄F₉ moiety could not be properly identified because they were complicatedly divided by the coupling with the fluorine nucleus.); ¹⁹F NMR (CDCl₃, C₆F₆): δ –82.34 (t, J = 10.9 Hz, 3F), –115.8 to –116.1 (m, 2F), –125.7 to –125.9 (m, 2F), 127.3 to –127.5 (m, 2F); IR (KBr): ν 2937, 2857, 2235, 1601, 1514, 1467, 1359, 1241, 1024, 837 cm⁻¹; HRMS (FAB) Calcd for (M⁺) C₂₅H₂₁F₉NO: 522.1479, Found: 522.1486.

Preparation of 2c from 4-bromo-1-(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyloxy)benzene

In a two-necked round-bottomed flask, equipped with a Teflon®-coated stirring bar, was placed 4-bromo-1-(5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodecyloxy)benzene (1.09 g, 2.0 mmol), Cl₂Pd(PPh₃)₂ (0.070 g, 0.10 mmol), PPh₃ (0.026 g, 0.10 mmol), and Et₃N (7.3 mL). To the solution was added CuI (0.038 g, 0.20 mmol) and trimethylsilylacetylene (0.35 g, 3.6 mmol), and the solution was stirred at 80 °C for 21 h. After being stirred for 21 h, precipitate formed during the reaction was separated by atmospheric filtration, and the filtrate was poured into saturated aqueous NH₄Cl solution. The crude product was extracted with Et₂O (50 mL) three times. The combined organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered under atmospheric pressure, and evaporated under reduced pressure using a rotary evaporator. After flash column chromatography using hexane/EtOAc 40/1 (v/v) mixed solvent as an eluent, the corresponding coupling product was obtained in 52% (0.59 g, 1.04 mmol) as yellow oil, which was used for the following reaction without further purification; In a round-bottomed flask was placed the above prepared TMS-terminated phenylacetylene (0.32 g, 0.56 mmol) and potassium carbonate (0.093 g, 0.67 mmol), and MeOH (2.8 mL). The whole was stirred at room temperature for 3 h. The resultant solution was poured into aqueous NH_4Cl solution. The crude product was extracted with Et_2O (10 mL) three times. The combined organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered under atmospheric pressure, and evaporated under reduced pressure using a rotary evaporator. The residue was subjected to silica-gel column chromatography using hexane/EtOAc 40/1 (v/v) mixed solvent as an eluent, producing 4-(5,5,6,67,7,8,8,9,9,10,10,10-tridecafluorodecyloxy)phenylacetylene (2c) in 82% (0.23 g, 0.46 mmol) as a colorless oil.

4-(5,5,6,67,7,8,8,9,9,10,10,10-tridecafluorodecyloxy)phenylacetylene (2c)

Yield: 82% (colorless oil); ¹H NMR (CDCl₃): δ 1.76–1.93 (m, 4H), 2.08–2.24 (m, 2H), 3.00 (s, 1H), 4.00 (t, J = 5.6 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 7.43 (d, J = 8.8 Hz, 2H); ¹³C NMR (CDCl₃): δ 17.3, 28.6, 30.7 (t, J = 22.0 Hz), 67.2, 75.8, 83.6, 114.4, 132.3, 133.6, 159.2 (Carbon signals for C₆F₁₃ moiety could not be properly identified

because they were complicatedly divided by the coupling with the fluorine nucleus.); ¹⁹F NMR (CDCl₃, C₆F₆): δ –82.05 (t, *J* = 9.4 Hz, 3F), –115.74 (brs, 2F), –123.21 (brs, 2F), –124.16 (brs, 2F), –124.82 (brs, 2F), –127.43 (brs, 2F); IR (neat): ν 2927, 2884, 2108, 1606, 1507, 1472, 1242, 1038, 833 cm⁻¹; HRMS (FAB) Calcd for (M⁺) C₁₈H₁₃F₁₃O: 492.0759, Found: 492.0758.

Synthesis of **1c** via Sonogashira cross-coupling reaction of 4-bromobenzonitrile with 4-(5,5,6,6,7,7,8,8,9,9,10,10,10,10-tridecafluorodecyloxy)phenylacetylene

In a two-necked round-bottomed flask, equipped with a Teflon®-coated stirring bar, was placed 4bromobenzonitrile (0.18 g, 1.0 mmol), $Cl_2Pd(PPh_3)_2$ (0.035 g, 0.050 mmol), PPh₃ (0.013 g, 0.050 mmol), and Et₃N (3.3 mL). To the solution was added CuI (0.020 g, 0.10 mmol) and 4-(5,5,6,6,7,7,8,8,9,9,10,10,10tridecafluorodecyloxy)phenylacetylene (0.89 g, 1.8 mmol), and the solution was stirred at 80 °C for 21 h. After being stirred for 21 h, precipitate formed during the reaction was separated by atmospheric filtration, and the filtrate was poured into saturated aqueous NH₄Cl solution. The crude product was extracted with Et₂O (20 mL) three times. The combined organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered under atmospheric pressure, and evaporated under reduced pressure using a rotary evaporator. The residue was subjected to silica-gel column chromatography using hexane/EtOAc 20/1 (v/v) mixed solvent as an eluent, followed by recrystallization from CH₂Cl₂/methanol (v/v = 1/1), producing the coupling product **1c** in 63% (0.37 g, 0.63 mmol) as a white solid.

4-Tridecafluorodecyloxy-4'-cyanodiphenylacetylene (1c)

Yield: 63% (white solid); M.p.: $T_m = 72$ °C, $T_c = 158$ °C (cooling process); ¹H NMR (CDCl₃): 1.79–1.97 (m, 4H), 2.10–2.26 (m, 2H), 4.03 (t, J = 6.0 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 7.48 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃): δ 17.3, 28.6, 30.6 (t, J = 22.0 Hz), 67.3, 86.8, 94.0, 111.0, 114.4, 114.6, 118.6, 128.6, 131.8, 132.0, 133.4, 159.5 (Carbon signals for C₆F₁₃ moiety could not be properly identified because they were complicatedly divided by the coupling with the fluorine nucleus.); ¹⁹F NMR (CDCl₃, C₆F₆): δ –82.06 (t, J = 10.9 Hz, 3F), –115.5 to –115.9 (m, 2F), –123.1 to –123.4 (m, 2F), –124.1 to –124.3 (m, 2F), –124.7 to –124.9 (m, 2F), –127.3 to –127.5 (m, 2F); IR (KBr): ν 2955, 2883, 2234, 1600, 1512, 1471, 1368, 1284, 1032, 958 cm⁻¹; HRMS (FAB) Calcd for (M⁺) C₂₅H₁₆F₁₃NO: 593.1024, Found: 593.1029.

NMR spectra

Figure S2. ¹³C NMR spectrum of 2a (CDCl3, 100 MHz)

Figure S3. ¹H NMR spectrum of **1a** (CDCl₃, 400 MHz)

Figure S4. ¹³C NMR spectrum of 1a (CDCl₃, 100 MHz)

Figure S5. ¹H NMR spectrum of **2b** (CDCl₃, 400 MHz)

Figure S6. ¹³C NMR spectrum of 2b (CDCl₃, 100 MHz)

Figure S7. ¹⁹F NMR spectrum of **2b** (CDCl₃, C₆F₆, 376 MHz)

Figure S8. ¹H NMR spectrum of 1b (CDCl₃, 400 MHz)

Figure S9. ¹³C NMR spectrum of 1b (CDCl₃, 100 MHz)

Figure S10. ¹⁹F NMR spectrum of 1b (CDCl₃, C₆F₆, 376 MHz)

Figure S12. ¹³C NMR spectrum of 2b (CDCl₃, 100 MHz)

Figure S13. ¹⁹F NMR spectrum of 2b (CDCl₃, C₆F₆, 376 MHz)

Figure S15. ¹³C NMR spectrum of 1c (CDCl₃, 100 MHz)

Figure S16. ¹⁹F NMR spectrum of 1c (CDCl₃, C₆F₆, 376 MHz)

Theoretical Calculation

Density functional theory (DFT) calculations were carried out using the Gaussian 16 (Rev. B.01) suite of programs. Geometry optimizations were performed at the CAM-B3LYP/6-311+G(d,p)//CAM-B3LYP/6-31+G(d) level of theory with an implicit solvation model, namely, the conductor-like polarizable continuum model (CPCM) for CH2Cl2. Vertical electronic transitions were calculated using a time-dependent DFT (TD-DFT) method at the same level of theory.

SCF Done: E(RCAM-B3LYP) = -1099.72269713 Hartree Dipole moment (field-independent basis, Debye): X=-8.7529 Y=-0.3067 Z=0.0001 Tot= 8.7583

Figure S17.	Optimized	geometry	of 1a.
-------------	-----------	----------	--------

Figure S18. Orbital distributions and the theoretical vertical transition of 1a.

Dipole moment (field-independent basis, Debye):

X=-5.6113 Y=1.8106 Z=0.0022 Tot=5.8962

Figure S19. Optimized geometry of 1b.

Figure S20. Orbital distributions and the theoretical vertical transition of 1b.

X = 5.4996 Y = 1.7106 Z = -0.0410 Tot= 5.7596

Figure S21. Optimized geometry of 1c.

Figure S22. Orbital distributions and the theoretical vertical transition of 1c.

Cartesian coordinates

No	Atom	Туре	Coord	Coordinates (Angstroms)		28	1	0	-3.351362	1.615778	-0.882026
INU.	No.		Х	У	Z	29	1	0	-3.35139	1.616105	0.881907
1	6	0	1.304159	2.098623	-0.000113	30	6	0	-4.387403	-0.066728	0.00023
2	6	0	2.665405	1.861389	-0.000138	31	1	0	-4.285526	-0.717045	0.8799
3	6	0	3.16475	0.546494	-0.00005	32	1	0	-4.285477	-0.717374	-0.879191
4	6	0	2.251689	-0.513712	0.000056	33	6	0	-5.779454	0.563587	0.000069
5	6	0	0.880196	-0.283743	0.000085	34	1	0	-5.882065	1.214557	-0.879349
6	6	0	0.400153	1.028299	0.000011	35	1	0	-5.882151	1.214827	0.879276
7	1	0	0.914633	3.11148	-0.000185	36	6	0	-6.907708	-0.466723	0.000166
8	1	0	3.358288	2.696673	-0.000229	37	1	0	-6.803152	-1.118058	0.879442
9	1	0	2.619329	-1.534865	0.000118	38	1	0	-6.803064	-1.118312	-0.878911
10	1	0	0.202747	-1.128302	0.000157	39	6	0	-8.30189	0.158652	0.000003
11	6	0	4.571419	0.298285	-0.000067	40	1	0	-8.406579	0.810093	-0.879221
12	6	0	5.763731	0.085156	-0.000072	41	1	0	-8.406689	0.810316	0.879049
13	6	0	7.168044	-0.172636	-0.000063	42	6	0	-9.430053	-0.872052	0.00006
14	6	0	7.64603	-1.492898	-0.000122	43	1	0	-9.324999	-1.523575	0.879259
15	6	0	8.086763	0.889134	0.000012	44	1	0	-9.324888	-1.523788	-0.878968
16	6	0	9.007361	-1.747382	-0.000097	45	6	0	-10.824987	-0.248571	-0.000106
17	1	0	6.941034	-2.316904	-0.000181	46	1	0	-10.931332	0.402912	-0.879316
18	6	0	9.449136	0.639363	0.000034	47	1	0	-10.931455	0.403109	0.878944
19	1	0	7.72349	1.910924	0.000052	48	6	0	-11.953335	-1.279168	-0.000071
20	6	0	9.913941	-0.680949	-0.000015	49	1	0	-11.847599	-1.929834	0.878439
21	1	0	9.371665	-2.768865	-0.000135	50	1	0	-11.847476	-1.930026	-0.878423
22	1	0	10.15507	1.462755	0.000089	51	6	0	-13.342938	-0.645429	-0.000238
23	8	0	-0.913104	1.361639	0.000024	52	1	0	-13.488018	-0.014443	-0.885012
24	6	0	-1.894086	0.321842	0.000201	53	1	0	-14.131095	-1.406032	-0.00021
25	1	0	-1.758727	-0.305098	-0.889812	54	1	0	-13.488143	-0.014251	0.884379
26	1	0	-1.758732	-0.304789	0.890441	55	6	0	11.324402	-0.942622	0.000021
27	6	0	-3.264141	0.969737	0.000062	56	7	0	12.463055	-1.154109	0.000052

 Table S1. Cartesian coordinate for optimized geometry of 1a

No	Atom	Туре	Coord	Coordinates (Angstroms)		28	1	0	-0.12085	1.800704	-0.939682
INO.	No.		Х	у	Z	29	1	0	-0.121162	1.852839	0.823672
1	6	0	4.543771	2.195921	-0.047522	30	6	0	-1.196571	0.169744	-0.008811
2	6	0	5.898864	1.925599	-0.038491	31	1	0	-1.116036	-0.450054	0.894347
3	6	0	6.365957	0.599234	-0.01039	32	1	0	-1.106914	-0.513699	-0.863947
4	6	0	5.427362	-0.438217	0.008596	33	6	0	-2.570816	0.836538	-0.040656
5	6	0	4.061892	-0.174895	-0.00006	34	1	0	-2.656526	1.450122	-0.947404
6	6	0	3.614175	1.148078	-0.028596	35	1	0	-2.661775	1.524289	0.810731
7	1	0	4.179142	3.217781	-0.069296	36	6	0	-3.715071	-0.175702	-0.0006
8	1	0	6.611937	2.74358	-0.053306	37	1	0	-3.635433	-0.781659	0.908602
9	1	0	5.769844	-1.467853	0.030501	38	1	0	-3.627059	-0.861118	-0.851225
10	1	0	3.364165	-1.002632	0.015328	39	6	0	-5.079134	0.516889	-0.039984
11	6	0	7.766121	0.316754	-0.001653	40	1	0	-5.175983	1.119973	-0.947178
12	6	0	8.952743	0.074191	0.005439	41	1	0	-5.192304	1.190425	0.815931
13	6	0	10.350137	-0.218697	0.013453	42	6	0	-6.227615	-0.462754	-0.010791
14	6	0	10.79467	-1.550527	0.025774	43	6	0	-7.625543	0.20761	0.017503
15	6	0	11.29528	0.819574	0.008909	44	6	0	-8.83853	-0.735468	-0.218936
16	6	0	12.149152	-1.839287	0.033217	45	6	0	-10.214352	-0.138903	0.186901
17	1	0	10.069118	-2.356497	0.029297	46	6	0	14.485782	-1.092968	0.036081
18	6	0	12.65091	0.535503	0.016375	47	7	0	15.618753	-1.332914	0.042172
19	1	0	10.95805	1.850225	-0.000501	48	9	0	-11.181806	-0.942643	-0.260537
20	6	0	13.082301	-0.796035	0.028509	49	9	0	-10.32165	-0.045649	1.512428
21	1	0	12.487472	-2.86964	0.042597	50	9	0	-10.382909	1.07262	-0.349198
22	1	0	13.377376	1.340825	0.012853	51	9	0	-8.680615	-1.878133	0.479464
23	8	0	2.309021	1.513123	-0.040039	52	9	0	-8.903434	-1.035994	-1.531232
24	6	0	1.303987	0.497618	-0.018539	53	9	0	-7.778238	0.811611	1.220738
25	1	0	1.425867	-0.1535	-0.892955	54	9	0	-7.669094	1.164215	-0.939179
26	1	0	1.421295	-0.110737	0.886827	55	9	0	-6.150555	-1.269602	1.088496
27	6	0	-0.049627	1.179243	-0.038832	56	9	0	-6.199337	-1.286673	-1.103364

 Table S2. Cartesian coordinate for optimized geometry of 1b

N-	Atom	Туре	Coord	inates (Angstr	roms)	28	1	0	-0.366598	1.758733	0.962254
INO.	No.		Х	У	Z	29	1	0	-0.365234	1.796757	-0.802074
1	6	0	-5.022642	2.169388	0.077476	30	6	0	0.698213	0.111302	0.044724
2	6	0	-6.379371	1.907405	0.061921	31	1	0	0.610871	-0.521904	-0.844575
3	6	0	-6.854327	0.584105	0.025313	32	1	0	0.621193	-0.546684	0.917432
4	6	0	-5.922239	-0.459118	0.005963	33	6	0	2.061142	0.806548	0.046928
5	6	0	-4.555183	-0.204234	0.021635	34	1	0	2.162843	1.448665	0.926083
6	6	0	-4.100135	1.115745	0.056933	35	1	0	2.16951	1.441046	-0.838751
7	1	0	-4.651723	3.188811	0.105234	36	6	0	3.207646	-0.176646	0.056838
8	1	0	-7.087459	2.729654	0.077635	37	6	0	4.605714	0.489925	-0.031592
9	1	0	-6.270957	-1.486477	-0.021981	38	6	0	5.817942	-0.442951	0.26378
10	1	0	-3.862606	-1.036327	0.005989	39	6	0	7.178656	0.115146	-0.254468
11	6	0	-8.256218	0.310338	0.007201	40	6	0	8.420634	-0.551236	0.406708
12	6	0	-9.444206	0.075239	-0.009244	41	6	0	9.753616	-0.329661	-0.36052
13	6	0	-10.84337	-0.208833	-0.029578	42	6	0	-14.983959	-1.05688	-0.090944
14	6	0	-11.295786	-1.537132	-0.078444	43	7	0	-16.118301	-1.289697	-0.107817
15	6	0	-11.78217	0.834766	-0.001338	44	9	0	10.763737	-0.74409	0.405461
16	6	0	-12.651948	-1.817266	-0.098625	45	9	0	9.768872	-1.02399	-1.497304
17	1	0	-10.575088	-2.347145	-0.100555	46	9	0	9.925627	0.965176	-0.636898
18	6	0	-13.139457	0.559324	-0.021382	47	9	0	8.222322	-1.881839	0.497869
19	1	0	-11.438725	1.862706	0.036441	48	9	0	8.575168	-0.046003	1.644167
20	6	0	-13.57877	-0.768779	-0.070115	49	9	0	7.242237	-0.08178	-1.587022
21	1	0	-12.996471	-2.8449	-0.136486	50	9	0	7.238758	1.43955	-0.009197
22	1	0	-13.861042	1.368732	0.000568	51	9	0	5.616074	-1.643138	-0.314094
23	8	0	-2.791993	1.473085	0.073266	52	9	0	5.908333	-0.615405	1.599397
24	6	0	-1.795002	0.452112	0.04979	53	9	0	4.748415	1.001564	-1.277628
25	1	0	-1.916524	-0.198106	0.924861	54	9	0	4.653949	1.512198	0.852678
26	1	0	-1.915371	-0.155939	-0.855207	55	9	0	3.110729	-1.045414	-0.991701
27	6	0	-0.439577	1.131533	0.066153	56	9	0	3.193802	-0.934081	1.196611

 Table S3. Cartesian coordinate for optimized geometry of 1c

Phase transition behavior

The phase transition behavior was observed by polarized optical microscopy using an Olympus BX53 microscope, equipped with a heating and cooling stage (Linkam Scientific Instruments, 10.0002L). The phase sequences and the phase transition enthalpies (ΔH) and entropies (ΔS) were determined using a differential scanning calorimetry (SHIMADZU DSC-60 Plus) at heating and cooling rates of 5.0 °C min⁻¹ under N₂ atmosphere. Powder X-ray diffraction patterns were measured using an X-ray diffractometer (Rigaku MiniFlex600) equipped with an X-ray tube (Cu $K\alpha$, 1 = 1.54 Å) and semiconductor detector (D/teX Ultra2). The sample powder was mounted on a silicon non-reflecting plate, and the plate was set on a benchtop stage (Anton Paar, BTS-500). Temperature, heating/cooling rate, and time of X-ray exposure were precisely controlled.

Figure S23. (a) DSC thermograms of **1a** during the heating and cooling processes under N₂ atmosphere. Scan rate: 5.0 °C min⁻¹. (b) Powder X-ray diffraction patterns of **1a** measured at 40 °C in Cry and 80 °C in N phases. (c) Optical texture image of 1a at 91 °C during the cooling process.

1a	Phase	Phase transition temperature	$\Delta H [\mathrm{kJ} \mathrm{mol}^{-1}]$	$\Delta S [J \text{ mol}^{-1} \text{ K}^{-1}]$
	sequence	[°C]		
1 st Heating	Cr–N	87	44.16	122.72
	N–Iso	92	0.80	2.21
1 st Cooling	N–Iso	92	-1.09	-3.00
	Cr–N	63	-38.26	-113.82
2 nd Heating	Cr^1 – Cr^2	69	-2.44	-7.13
	Cr ² –N	87	43.98	-122.23
	N–Iso	92	0.86	2.36
2 nd Cooling	N–Iso	92	-1.17	-3.20
	Cr–N	63	-39.72	-118.19
3 rd Heating	Cr^1 – Cr^2	69	-1.22	-3.55
	Cr ² –N	87	43.94	122.13
	N–Iso	91	0.80	2.20
3 rd Cooling	N–Iso	92	-1.10	-3.01
	Cr–N	62	-38.38	-114.53

Table S4. Phase sequence of 1a and the phase-transition enthalpy and entropy

Figure S24. (a) DSC thermograms of **1b** during the heating and cooling processes under N_2 atmosphere. Scan rate: 5.0 °C min⁻¹. (b) Powder X-ray diffraction patterns of **1b** measured at 100 °C in SmA phases. (c) Optical texture image of **1b** at 100 °C during the cooling process.

1b	Phase	Phase transition temperature	$\Delta H [\mathrm{kJ} \mathrm{mol}^{-1}]$	$\Delta S [J \text{ mol}^{-1} \text{ K}^{-1}]$
	sequence	[°C]		
1 st Heating	Cr–SmA	88	27.76	76.92
	SmA–Iso	133	5.37	13.23
1 st Cooling	SmA–Iso	138	-5.59	-13.62
	Cr–SmA	61	-23.07	-69.07
2 nd Heating	Cr^1 – Cr^2	85		
	Cr ² –SmA	92	27.93	77.85
	SmA–Iso	134	5.37	13.20
2 nd Cooling	SmA–Iso	59	-5.43	-13.22
	SmA-Cr	63	-22.73	-68.41
3 rd Heating	Cr^1 – Cr^2	86		
	Cr ² –SmA	92	27.50	76.64
	SmA–Iso	134	5.38	13.21
3rd Cooling	SmA–Iso	138	-5.45	-13.25
	Cr–SmA	61	-23.45	-70.21

Table S5. Phase sequence of 1b and the phase-transition enthalpy and entropy

Figure S25. (a) DSC thermograms of **1c** during the heating and cooling processes under N_2 atmosphere. Scan rate: 5.0 °C min⁻¹. (b) Powder X-ray diffraction patterns of **1c** measured at 120 °C in SmA phases. (c) Optical texture image of **1c** at 120 °C during the cooling process.

1c	Phase	Phase transition temperature	$\Delta H [\mathrm{kJ} \mathrm{mol}^{-1}]$	$\Delta S [J \text{ mol}^{-1} \text{ K}^{-1}]$	
	sequence	[°C]			
1 st Heating	Cr^1 – Cr^2	100			
	Cr ² –SmA	106	41.67	111.82	
	SmA–Iso	158	5.90	13.71	
1 st Cooling	SmA–Iso	158	-5.74	-13.31	
	Cr–SmA	72	-28.06	-81.27	
2 nd Heating	Cr^1 – Cr^2	92			
	Cr ² –SmA	96	30.80	84.29	
	SmA–Iso	157	5.75	13.35	
2 nd Cooling	SmA–Iso	158	-5.68	-13.16	
	Cr–SmA	75	-28.04	-80.53	
3 rd Heating	Cr^1 – Cr^2	92			
	Cr ² –SmA	96	30.49	83.45	
	SmA–Iso	157	5.64	13.11	
3 rd Cooling	SmA–Iso	158	-5.64	-13.10	
	Cr–SmA	77	-28.28	-80.67	

Table S6. Phase sequence of 1c and the phase-transition enthalpy and entropy

Photophysical behavior

The UV-vis absorption spectra were recorded using a JASCO V-750 absorption spectrometer. The PL spectra of the solution and crystalline forms were acquired using a JASCO FP-6600 fluorescence spectrometer or a Hamamatsu Photonics Quantaurus-QY. The absolute quantum yields in both the solution and crystalline phases were measured using the Quantaurus-QY C11347-01 absolute PL quantum yield spectrometer (Hamamatsu Photonics). The solution sample was prepared by dissolution in CH₂Cl₂ and the concentration was adjusted to 1.0×10^{-5} mol L⁻¹ for absorption measurements or 1.0×10^{-6} mol L⁻¹ for PL measurements. The crystalline sample was prepared by freezing the LC sample using liquid nitrogen immediately after the phase transition.

(c) THF ($\lambda_{ex} = 318 \text{ nm}$)

(f) MeCN ($\lambda_{ex} = 331 \text{ nm}$)

Figure S26. UV-vis and PL spectra of 1a in various solvent.

(b) $CH_2Cl_2 (\lambda_{ex} = 321 \text{ nm})$

(d) EtOAc ($\lambda_{ex} = 272 \text{ nm}$)

Table S7. Photophysical data in various solvent

	3	ν	Δf	$v_{\rm Abs} [{ m cm}^{-1}]$	$v_{\rm PL} [cm^{-1}]$	$\Delta v [\text{cm}^{-1}]$
hexane	1.88	1.37	0.00041099	30030	29155	875
EtOAc	6.02	1.37	0.20050637	30675	25840	4835
THF	7.58	1.4	0.21205627	30303	25445	4858
DCM	8.93	1.42	0.21851142	30303	25253	5050
MeCN	35.9	1.34	0.30610758	30675	24096	6579

Solvent polarity parameter:

 $\Delta f = \frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1}$

Lippert-Mataga equation:

 $\Delta \nu = \nu_{abs} - \nu_{PL} = \frac{2(\mu_e - \mu_g)^2}{hca^3} \Delta f + constant$

Figure S27. (a) PL spectra of 1a in various solvent. (b) Lippert-Mataga plot for 1a.

(c) THF ($\lambda_{ex} = 333 \text{ nm}$)

(f) MeCN ($\lambda_{ex} = 334 \text{ nm}$)

Figure S28. UV-vis and PL spectra of 1b in various solvent.

35 Abs. PL 1.0 30 0.8 Normalized PL intensity 25 ε [10³, L mol⁻¹ cm⁻¹] 20 0.6 15 0.4 10 0.2 5 ____0.0 550 0 ∟ 250 500 300 350 400 450 Wavelength [nm]

(d) EtOAc ($\lambda_{ex} = 270 \text{ nm}$)

(b) $CH_2Cl_2 (\lambda_{ex} = 321 \text{ nm})$

Table S8. Photophysical data in various solvent

	3	ν	Δf	$v_{\rm Abs} [{ m cm}^{-1}]$	$v_{\rm PL} [cm^{-1}]$	$\Delta v [\text{cm}^{-1}]$
hexane	1.88	1.37	0.00041099	30120	29155	965
EtOAc	6.02	1.37	0.20050637	30488	26042	4446
THF	7.58	1.4	0.21205627	30303	25773	4530
DCM	8.93	1.42	0.21851142	30303	25381	4922
MeCN	35.9	1.34	0.30610758	30675	24213	6462

Solvent polarity parameter:

 $\Delta f = \frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1}$

Lippert-Mataga equation:

 $\Delta v = v_{abs} - v_{PL} = \frac{2(\mu_e - \mu_g)^2}{hca^3} \Delta f + constant$

Figure S29. (a) PL spectra of 1b in various solvent. (b) Lippert-Mataga plot for 1b.

(c) THF ($\lambda_{ex} = 317 \text{ nm}$)

(f) MeCN ($\lambda_{ex} = 271 \text{ nm}$)

Figure S30. UV-vis and PL spectra of 1c in various solvent.

(b) $CH_2Cl_2 (\lambda_{ex} = 321 \text{ nm})$ 40 Abs PL 1.0 30 0.8 Normalized PL intensity ε [10³, L mol⁻¹ cm⁻¹] 0.6 20 0.4 10 0.2 ____0.0 550

400

Wavelength [nm]

450

500

(d) EtOAc ($\lambda_{ex} = 310 \text{ nm}$)

300

350

0∟ 250

Table S9. Photophysical data in various solvent

	3	ν	Δf	$v_{ m Abs} [m cm^{-1}]$	$v_{\rm PL} [cm^{-1}]$	$\Delta v [\text{cm}^{-1}]$
hexane	1.88	1.37	0.00041099	30303	29586	717
EtOAc	6.02	1.37	0.20050637	30581	26178	4403
THF	7.58	1.4	0.21205627	30303	25316	4987
DCM	8.93	1.42	0.21851142	30211	25773	4438
MeCN	35.9	1.34	0.30610758	30769	24331	6438

Solvent polarity parameter:

 $\Delta f = \frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1}$

Lippert-Mataga equation:

 $\Delta \nu = \nu_{abs} - \nu_{PL} = \frac{2(\mu_e - \mu_g)^2}{hca^3} \Delta f + constant$

Figure S31. (a) PL spectra of 1c in various solvent. (b) Lippert-Mataga plot for 1c.

Figure S32. Excitation and PL spectra of (a) 1a, (b) 1b, and (c) 1c in crystalline phase. Excitation wavelength $(\lambda_{ex}) = 300$ nm for 1a–c. Excitation spectra were obtained by using the Quantaurus-QY with a Excitation-wavelength scan method. Monitoring wavelength region: 403–425 nm for 1a, 445–465 nm for 1b, and 420–440 nm for 1c.

Powder X-ray diffraction

Powder X-ray diffraction patterns were measured using an X-ray diffractometer (Rigaku MiniFlex600) equipped with an X-ray tube (CuK α , $\lambda = 1.54$ Å) and semiconductor detector (D/teX Ultra2). The sample powder was mounted on a silicon non-reflecting plate, and the plate was set on a benchtop heating stage (Anton Paar, BTS-500).

Figure S33. Powder X-ray diffraction of (a) 1a, (b) 1b, and (c) 1c at room temperature.

Figure S34. (a) Excitation and PL spectra of 1a in N phase structure, (b) 1b in SmA phase structure, and (c) 1c in SmA phase structure. Excitation wavelength (λ_{ex}) = 300 nm for 1a and 340 nm for 1b and 1c. Excitation spectra were obtained by using the Quantaurus-QY with a Excitation-wavelength scan method. (d) CIE plot for PL color of 1a, 1b and 1c in the LC phase structure.

Figure S35. PL spectra of 1b under 1st and 2nd cooling process using fluorescence spectrometer.