Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2022 Supplementary Information

Dual-State Emission versus no emission by manipulating molecular structures of cyanovinyl – benzofuran derivatives

Nagham Ibrahim,^a Matthieu Loumaigne,^a Jérémie Grolleau,^a Magali Allain ^{a,b} and Pierre Frère^a

- a) Univ Angers, MOLTECH-Anjou UMR CNRS 6200, SFR Matrix, F-49000 Angers, France
- b) Univ Angers, SFR MATRIX, F-49000 Angers, France

Contents

Synthesis of BPF3 α and BPF3 β	2
Table S1: X-ray crystallographic data of single crystals of series BPF1α - β and Cy-BPF1	3
Table S2: X-ray crystallographic data of single crystals of series BPF2 α and BPF3 α - β	4
Figure S1: Stacking modes and intermolecular contacts identified from the single crystals X-ray data of BPF2 $lpha$	5
Figure S2: Normalized UV-Vis and fluorescence spectra of BF2 $lpha$, BF2 eta and BPF2 $lpha$	
Figure S3: Theoretical UV-Vis spectrum of BPF1 α	7
Figure S4: Theoretical UV-Vis spectrum of BPF1 eta	8
Figure S5: Emission spectra of BPF1 α in different solvents and photographs of emission under excitation at 350 nm	9
Figure S6: TD-DFT torsional scans of double bond Φ e for BPF2 $lpha$	10
Determination of the lifetime	11
Figures S7-S10: Lifetime delay for BPF1 α and BPF2 α in CHCl ₃ and powders	12
Figure S11: HOMO and LUMO frontier orbitals of BPF3 $lpha$ and BPF3 eta	13
Figure S12: TD-DFT torsional scans of double bond Φ e for BPF3$lpha$ and BPF3eta	14
Figure S13: X-Ray structures, photophysical properties of BPF3 $lpha$ and BPF3 eta in the solid state	15
¹ H, ¹⁹ F and ¹³ C NMR spectra of BPF1α–β, BPF2α, BPF3α–β and CY-BPF1	16 - 33
Mass spectra of BPF1a-b, BPF2a, BPF3a-b and CY-BPF1	34 - 37

Synthesis of $BPF3\alpha$ and $BPF3\beta$

The compounds were prepared by Knoevenagel condensation in EtOH according to the general procedure

General procedure for the Knoevenagel reactions

A mixture of aldehyde (4 mmol), carbonitrile derivative (1.1 equiv.) and a catalytic amount of NaO^tBu (10% mol.) was let in ethanol (10 mL) for 2 h at room temperature in dark. The resulting precipitate was filtered, washed with cold ethanol. Afterwards, it was dried in high vacuo to give the as-synthetized powders.

Scheme S1: Synthesis of **BPF3** α - β by Knoevenagel condensation

	BPF1a	BPF1β	Cy-BPF1	
Formula	C17 H6 F5 N O	C17 H6 F5 N O	C36.25 H16.5 F10 N2 O2.75	
М	335.23	335.23	714.01	
т (К)	200	200	200	
Crystal system	Orthorhombic,	Monoclinic,	Triclinic,	
Space group	P 2 ₁ 2 ₁ 2 ₁	P 2 ₁ /n	P -1	
Unit cell.: a (Å)	6.2934(2)	6.8261(4)	11.7298(6)	
b (Å)	7.4260(2)	28.701(2)	12.3008(7)	
c (Å)	28.4033(8)	6.9455(5)	12.8705(9)	
a (°)	90	90	64.625(6)	
b (°)	90	101.958(7)	88.736(5)	
g (°)	90	90	72.512(5)	
Volume (ų)	1327.42(7)	1331.21(15)	1588.00(18)	
Z	4	4	2	
Calculated density	1.677	1.673	1.493	
F(000)	672	672	720	
θ range (°)	3.11 to 71.949	6.17 to 76.21	3.831 to 71.847	
	-7≤h≤7,	-8≤h≤6	-14≤h≤14	
Limiting indices	-8≤k≤7,	-35≤k≤34	-15≤k≤15	
	-35≤l≤33	-8≤l≤8	-15≤l≤15	
Reflection coll.	3348	5905	12415	
Unique	2179	2695	6071	
R (int)	0.0103	0.0296	0.0295	
Final R indices, [I>2sigma(I)],				
R1	0.0286	0.0535	0.0547	
wR2	0.0757	0.1453	0.1554	
R indices (all data),				
R1	0.0288	0.0630	0.0604	
wR2	0.0760	0.1546	0.1631	
Largest diff.	0.199	0.317	0.484	
Peak and hole (e A ⁻³)	-0.192	-0.278	-0.356	
CCDC number	2163090	2164115	2163092	

Table S1: X-ray crystallographic data of single crystals of series **BPF1\alpha-\beta and Cy-BPF1**

	BPF2α	BPF3a	BPF3B
Formula	C17 H6 Br F4 N O	C18 H10 F3 N O	C18 H10 F3 N O
М	396.14	313.27	313.27
Т (К)	293	220	293
Crystal system	Monoclinic,	Triclinic,	Triclinic,
Space group	P 2 ₁ /c	P -1	P -1
Unit cell.: a (Å)	6.292(2)	6.4098(3)	6.7868(5)
b (Å)	7.628(2)	7.2975(5)	8.5364(8)
c (Å)	30.394(2)	15.8052(8)	13.0400(10)
a (°)	90	84.237(5)	86.970(7)
b (°)	92.960(10)	81.645(4)	86.932(7)
g (°)	90	79.261(5)	78.760(7)
Volume (Å ³)	1456.8(6)	716.59(7)	739.22(10)
Z	4	2	2
Calculated density	1.806	1.452	1.407
F(000)	776	320	320
θ range (°)	3.79 to 28.00	2.83 to 83.88	3.76 to 27.50
	-8≤h≤5,	-7≤h≤5	-8≤h≤8
Limiting indices	-9≤k≤9,	-8≤k≤8	-10≤k≤11
	-39≤l≤39	-19≤l≤19	-16≤l≤16
Reflection coll.	12588	4815	18618
Unique	3321	2682	3347
R (int)	0.0410	0.0287	0.0498
Final R indices, [I>2sigma(I)],			
R1	0.0449	0.0522	0.0764
wR2	0.0957	0.1405	0.2139
R indices (all data),			
R1	0.0862	0.0624	0.1066
wR2	0.1124	0.1625	0.2478
Largest diff.	0.349	0.396	0.761
Peak and hole (e A ⁻³)	-0.605	-0.281	-0.405
CCDC number	2164116	2163091	2164117

Figure S1: Stacking modes and intermolecular contacts identified from the single crystals X-ray data of BPF2 α

Figure S2: Normalized absorption spectra 10⁻⁵ M in CHCl₃ (black line), fluorescence under excitation at 350 nm spectra 10⁻⁵ M in CHCl₃ (dashed black line) and in the solid state (blue line). In red, values of molar extinction coefficient and absolute emission quantum yield in solution (chloroform solution) and in the solid state.

Theoretical calculations

B3LYP/6.31g(d,p) in CHCl₃ using PCM model

UV-Vis theoretical

Figure S3 : Theoritical UV-Vis of BPF1 α

Excitation energies (singlet) and oscillator strengths: Excited State 1: Singlet-A 3.2194 eV 385.11 nm f=0.9716 <S**2>=0.000 84 -> 85 0.70544 Excited State 2: Singlet-A 3.6543 eV 339.28 nm f=0.0239 <S**2>=0.000 83 -> 85 0.70144 Excited State 3: Singlet-A 4.0226 eV 308.22 nm f=0.0184 <S**2>=0.000 82 -> 85 0.68684 Excited State 4: Singlet-A 4.3650 eV 284.04 nm f=0.1681 <S**2>=0.000 81 -> 85 0.67056 84 -> 86 -0.13105 84 -> 87 -0.14313Excited State 5: Singlet-A 4.8669 eV 254.75 nm f=0.0172 <S**2>=0.000 82 -> 85 -0.12609 84 -> 86 0.54988 84 -> 87 -0.39658

TD-SCF, B3LYP/6.31g(d,p) in $CHCl_3$ using PCM model

B3LYP/6.31g(d,p) in CHCl₃ using PCM model

UV-Vis theoretical

Figure S4 : Theoritical UV-Vis of BPF1 β

Excitation energies (singlet) and oscillator strengths: Excited State 1: Singlet-A 3.3473 eV 370.40 nm f=1.1180 <S**2>=0.000 84 -> 85 0.70466 Excited State 2: Singlet-A 3.7004 eV 335.06 nm f=0.0356 <S**2>=0.000 83 -> 85 0.69946 **Excited State 3**: Singlet-A 4.0775 eV 304.07 nm f=0.0078 <S**2>=0.000 82 -> 85 0.69818 **Excited State 4**: Singlet-A 4.4088 eV 281.22 nm f=0.0099 <S**2>=0.000 81 -> 85 0.65147 84 -> 86 -0.23749 Excited State 5: Singlet-A 4.7349 eV 261.85 nm f=0.0117 <S**2>=0.000 81 -> 85 0.23140 0.63801 84 -> 86

TD-SCF, B3LYP/6.31g(d,p) in $CHCl_3$ using PCM model

Figure S5: Emission spectra of **BPF1** α in different solvents and photographs of emission under excitation at 350 nm.

Figure S6: TD-DFT torsional scans of double bond Φ e for **BPF2** α using the optimized S0 state at the TD-B3LYP/6-31G(d,p) level , S0, S1 and T1 energies were computed for each data point.

Determination of the lifetime

The instrument response function (IRF) measured with a scattering solution at the excitation wavelength (i.e. 375nm) is very different from the one that would be measured at the wavelength of emission of the fluorophore. This is mainly due to the time response of the avalanche photodiode (APD).

Consequently, the instrument response function was measured differently. More precisely, a dye known for its single 5.0ns decay in water, namely Atto 390, was measured with the apparatus. It was then fitted with a 5.0 ns decay convoluted with a IRF modelized as [A] :

$$IRF(t; \tau_{IRF}) = \frac{t}{\tau_{IRF}} exp\left(-\frac{t}{\tau_{IRF}}\right)$$

where τ_{IRF} is the characteristic time of the IRF corresponding to the convolution of the response time of the APD and the pulse shape of the exciting laser. It is the only free parameters during this fitting procedure.

This modelized profile with the corresponding value of τ_{IRF} (with here $\tau_{IRF} = 0.1ns$) was then used for reconvolution during the fitting of the fluorescence decays.

NB: The bump at 15ns is an artifact due to a sub-laser pulse that is artificially magnified by the use of the log scale and only marginally affects the fit of the data.

```
[A] : W. Becker. The bh TCSPC handbook. 8th edition. Becker et Hickl, 2019
```


Figure S11 HOMO and LUMO frontier orbitals along with their corresponding energy levels calculated gas-phase by DFT at the B3LYP/6-31G(d,p) level.

Figure S12: TD-DFT torsional scans of double bond Φe for **BPF3** α (red) and **BPF3** β (black) using the optimized S0 state at the TD-B3LYP/6-31G(d,p) level , S0, S1 and T1 energies were computed for each data point

Figure S13: a) Stacking mode and intermolecular contacts in the X-Ray structure of **BPF3** α . b) Dimer of **BPF3** β showing the distances d = 3.76 Å between the centroids of the cyanovinyl bonds. c) Emission spectrum of **BPF3** α solid under excitation at 350 nm and photographs of crystals under daylight and UV light (350 nm). d) ¹H NMR in CDCl₃ of **BPF3** β (bottom) and irradiated **BPF3** β with UV light (365 nm) for 12 h

¹⁹F NMR of **BPF1** α compound in CDCl₃

-122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 -170 -172 f1 (ppm)

¹⁹F NMR of **BPF1** β compound in CDCl₃

Figure: ¹⁹F NMR of **BPF2** α compound in CDCl₃

Figure: ¹⁹F NMR of **Cy-BPF1** compound in CDCl₃

¹H NMR of **BPF3** α compound in CDCl₃

-42 -44 -46 -48 -50 -52 -54 -56 -58 -60 -62 -64 -66 -68 -70 -72 -74 -76 -78 -80 -82 -84 -86 -88 -90 -92 -94 -96 -98 -100 f1 (ppm)

Mass Spectrum of Cy-BPF1, Na

msTornado Analysis 1.8.3, 2022-03-03T09:45:47+01:00

Parameters:

 Mass
 Tolerance
 Electron Mode
 Charge
 DBE Range
 Max Results

 313.07050 ± 0.00125
 4.0 ppm
 Odd
 +1
 -0.5 - 200.0
 100

 Elements
 Element

C 0-20 H 0-200 N 0-5 O 0-5 F 3-3

Results:

 #
 Formula
 Mass
 DBE
 Abs. Error (u)
 Error (u)
 Error (ppm)

 1
 C18 H10 N O F3
 313.07090
 13.0
 0.00040
 -0.00040
 -1.29

Parameters:

Mas 313	s 3.07061 ± 0	0.00125	Toler 4.0	ance ppm		Electr Odd	on M	ode	Charge +1	1	DBE Range -0.5 - 200.0	Max Results 100	
Elen	nents												
С	0 - 20	н	0 - 200	Ν	0 - 5	2	0	0 - 5	F	3 - 3			

Results:

 Formula
 Mass
 DBE
 Abs. Error (u)
 Error (u)
 Error (ppm)

 1
 C18 H10 N O F3
 313.07090
 13.0
 0.00029
 -0.0029
 -0.94
 37