Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2022

Supplementary information

Design of carbon-ceramic composite membranes with tunable molecular cut-offs from a carboxylic benzoxazine ligand chelated to silica-zirconia

Sulaiman Oladipo Lawal, Hiroki Nagasawa, Toshinori Tsuru, and Masakoto Kanezashi*

Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan

*Corresponding author: E-mail address: kanezashi@hiroshima-u.ac.jp (M. Kanezashi)

SI 1 Materials

The precursor resin sol was prepared via a sol-gel process. Vinyltrimethoxysilane (VTMS; Aldrich; 98 % purity) was used as the silica precursor while zirconium n-butoxide (ZrTB; Aldrich; 80 % in butanol) served as the zirconia precursor. The solvent medium used to carry out the reactions comprised of a 50:50 mixture of dimethyl carbonate (DMC; Nacalai Tesque) and ethanol (EtOH; Aldrich). In the sol-gel reactions, hydrochloric acid (HCl; Nacalai Tesque; 37 % pure) served as the catalyst for hydrolysis. Dibenzoyl peroxide (BzO₂; Aldrich) was used as a radical initiator during thermal curing. All materials were used as received without further purification.

SI 2 Preparation of VTMS-ZrTB-BZPA precursor resin sol, preceramic resin and carbonceramic samples

The steps involved in the preparation of VTMS-ZrTB-BZPA precursor resin sol up to the preparation of carbon-SiO₂-ZrO₂ are represented in Figure S1. The amounts of the various reagents used are also presented in Table S1.

2 wt% of VTMS-ZrTB-BZPA was prepared in two stages. In the first stage, ZrTB dissolved in DMC was modified by reacting with BZPA (BZPA/ZrTB molar ratio 2:1) for one hour at room temperature. In the second stage, a solution of VTMS in ethanol was then co-hydrolyzed with the BZPA-modified ZrTB (Si/Zr molar ratio 9:1) using deionized water (H₂O/alkoxide molar ratio 4) and HCl as a catalyst (H⁺/alkoxide molar ratio 1:4). Hydrolysis and poly-condensation were carried out by stirring the mixture at 600 rpm for more than 12 hours at room temperature.

After the hydrolysis and polycondesation reaction, dibezoyl peroxide (BzO₂) was added (radical initiator/BZPA molar ratio 0.45) to cure the resin sol thermally coupled with slow solvent evaporation in an atmosphere controlled at 80-90 °C to obtain the preceramic resin gel. Carbon-SiO₂-ZrO₂ powders were then prepared from VZB preceramic resin gel via pyrolysis at 300 to 850 °C under a N₂ stream (600 ml min⁻¹) for 30 minutes.

Fig. S1 Preparation flow diagram for VTMS-ZrTB-BZPA resin and derived carbon-ceramic composite

Table S1 Amounts and properties of chemical reagents used in the preparation of VTMS-ZrTB-BZPA resin sol

Reagents	Molar ratios* [-]	Molecular weight [g mol ⁻¹]	Purity _ [%]	Amounts	
				Mole	Mass
				[-]	[g]
ZrTB	0.1	386.7	80	0.00073	0.35
BZPA	0.2	221.2	97	0.00145	0.33
VTMS	0.9	148.2	98	0.00654	0.99
H_2O	4	18	100	0.015	0.26
HC1	0.25	36.5	37	0.0018	0.18

*1 M (molar) basis

SI 3 Characterization of carbon-ceramic samples

The presence and transformation of structural moieties in thin films supported on UVtreated Si-wafers were monitored using Fourier Transform-Infrared spectroscopy (FT-IR, FTIR-4100, JASCO, Japan). The pyrolysis route of the BZPA-modified ZrTB and VZB resin gels were analyzed and monitored using thermogravimetry (DTG-60 Shimadzu Co., Japan). The presence and the chemical states of constituent atoms were confirmed using x-ray photoelectron spectroscopy (XPS; Shimadzu, Japan). The physical evidence of the presence of carbon nanoparticles was confirmed by obtaining the micrographs of the carbon-ceramic particles using transmission electron microscopy (TEM; JEOL, Japan). The samples to be resolved were prepared on ultra-high-resolution carbon supports (STEM 100Cu Grids) by dropping approximately 10 µl of a 2 wt% dispersion of the fine particles in butanol onto the grids. Beforehand, the prepared grids were vacuum-dried at 50 °C for 24 hours. The crystal/amorphous structure and lattice spacing values of samples were obtained using X-ray diffraction spectroscopy (D2 PHASER X-Ray Diffractometer, Bruker, Germany) with Cu Ka as the radiation source at a wavelength of 1.54 Å. The cross-section morphology and elemental analysis of the carbon-ceramic membrane was examined by Field Emission-Scanning Electron Microscopy (FE-SEM, Hitachi S-4800, Japan). Prior to examination, carefully cut pieces of the membrane were attached to sample holders via carbon tape and vacuum-dried at 50 °C for 24 hours. Furthermore, N2 sorption of powders were analysed at -196 °C using BELMAX sorption equipment (BEL JAPAN INC., Japan). Prior to this measurement, adsorbed gases and vapours were evacuated from the samples at 200 °C for at least 12 hours.

SI 4 Results and discussion

Fig. S2 Thermogravimetry comparison of the decomposition profile of pure BZPA, pure ZrTB, the reaction product of ZrTB and BZPA, and a physically mixed ZrTB and BZPA powders.

Fig. S3 Survey scan wide x-ray photoelectron spectra (XPS) measured for cured VTMS-ZrTB-BZPA film and derived carbon-ceramic films obtained at different pyrolysis temperatures.

Fig. S4 Narrow (a) C 1s, (b) Si 2p, and (c) Zr 3d XPS spectra of a cured VTMS-ZrTB-BZPA preceramic film and carbon-ceramic films formed at different final pyrolysis temperatures.

Fig S5. Temperature program used in the fabrication process of C-SZ membranes. The ramping rate between temperatures was 10 °C min⁻¹ while the dwell time at each final pyrolysis temperature was 1 hour.

Fig. S6 Atomic EDS intensities of C (K), Al (K), Si (K) and Zr (L) as functions of membrane depth for a carbon-SiO₂-ZrO₂ membrane prepared at 750 °C.

Fig. S7 Flow diagram of the gas permeation rig set-up. The upstream of the membrane module was kept at 200 kPa absolute pressure while the downstream was kept at 100 kPa absolute pressure.

Table S2 H_2 permeance and H_2/CH_4 ideal selectivity for selected state-of-the-art carbon molecular sieve and composite carbon molecular sieve membranes prepared at different pyrolysis temperatures.

Precursor type	Pyrolysis temperature [°C]	H ₂ permeance [10 ⁻⁷ mol m ⁻² s ⁻¹ Pa ⁻¹]	H ₂ /CH ₄ ideal selectivity [-]	Reference no.			
Carbon molecular sieve membranes							
Polyimide	800	3.13	468	[S1]			
Polyimide	700	10.5	228	[S2]			
Polyetherimide	600	0.91	174	[S3]			
Polyetherimide	900	1.45	100	[S4]			
Polyimide	650	0.10	10.5	[S5]			
Phenolic resin	850	0.02	45	[S6]			
Polyimide	600	1.51	182	[S7]			
Phenolic resin	700	0.08	348	[S8]			
Cellulose hollow fiber	850	0.5	5706	[S9]			
Polyester	500	6.3	250	[S10]			
Composite carbon molecular sieve/SiC membranes							
SiC	750	13.7	47	[S11]			
SiC	750	15.0	10	[S12]			
Phenolic resin/boehmite	600	0.52	1020	[S13]			
Phenolic resin/boehmite	600	0.70	1000	[S14]			
Fe-doped lignin	500	1.32	584	[S15]			
β-SiC	600	0.05	200	[S16]			
Carbonized ceramic membranes							
VTMS-Benzoxazine	850	1.94	95	This work			

The modified gas translation model proposed by Lee *et al.* [S17] presents a way to estimate the mean pore size of membranes with pore size of less than 1 nm by employing an NKP (normalized Knudsen permeance) method based on the modified gas translation model expressed below.

$$P_{i} = \frac{1}{3\tau L} \left(d_{p} - d_{i} \right) \frac{\left(d_{p} - d_{i} \right)^{2}}{d_{p}^{2}} \sqrt{\frac{8}{\pi M_{i} R T}} exp\left(-\frac{E_{p,i}}{R T} \right)$$
(S1)

$$P_{i} = \frac{k_{0,i}}{\sqrt{M_{i}RT}} exp\left(-\frac{E_{p,i}}{RT}\right)$$
(S2)

Where $\frac{\varepsilon (d_p - d_i)^3}{3\tau L} \sqrt{\frac{8}{p}}$ is the pre-exponential factor $k_{0,i}$ expressing the combination of configurational factors of the membrane and permeating molecule (porosity ε , tortuosity τ , membrane thickness L, mean pore diameter d_p and kinetic diameter d_i), $E_{p,i}$ is the apparent activation energy of permeation for a gas species, i, M_i is the molecular weight of the gas species, R is the universal gas constant and T is the permeation temperature.

Equation (S2) can be converted as follows.

$$\left(\sqrt{M_i}P_i\right)^{\frac{1}{3}} = \left(\frac{k_0}{\sqrt{RT}}exp\left(-\frac{E_{P,i}}{RT}\right)\right)^{\frac{1}{3}}(d_0 - d_i)$$
(S3)

Where $E_{P,i}$ can be regarded as a constant for the sake of simplicity, and pore size, d_0 , can be obtained together with $\frac{k_0}{\sqrt{RT}}exp\left(-\frac{E_{P,i}}{RT}\right)$ by regressing each $\left(\sqrt{M_i}P_i\right)^{\frac{1}{3}}$ to Equation (S3).

To estimate the pore size of the present membranes, $(\sqrt{M_i}P_i)^{\frac{1}{3}}$ is plotted as a function of the molecular sizes of permeating molecules, d_i , as shown in Figure S8. The molecular size at $(\sqrt{M_i}P_i)^{\frac{1}{3}} = 0$ corresponds to the pore size, d_0 .

Fig. S8 Linear plot of normalized Knudsen permeance (NKP) as a function of kinetic diameter obtained from the permeation data at 300 °C for the C-SZ membranes

Fig. S9 Nitrogen adsorption isotherms at -196 °C for VZB-derived carbon-SiO₂-ZrO₂ powders obtained at different pyrolysis temperatures.

Fig. S10 Schematic illustration of the pyrolytic transformation of a VTMS-ZrTB-BZPA resin into carbon-SiO₂-ZrO₂ structure.

References

- S1. W. Ogliego, T. Puspasari, M. K. Hota, N. Wehbe, H. N. Alshareef and I. Pinnau, *Mater. Today Nano*, 2020, 9, 100065
- S2. P. H. Tchoua Ngamou, M. E. Ivanova, O. Guillon and W. A. Meulenberg, *J. Mater. Chem. A*, 2019, **7**, 7082-7091
- S3. M. -Y. Wey and H. -H. Tseng, C. -K. Chiang, J. Membr. Sci., 2014, 453, 603-613
- S4. H. -H. Tseng, K. Shih, P. -T. Shiu and M. -Y. Wey, J. Membr. Sci., 2012, 405-406, 250-260
- S5. K. Briceno, D. Montane, R. Garcia-Valls, A. Iulianelli and A. Basile, *J. Membr. Sci.*, 2012, 415-416, 288-297
- S6. W. Wei, G. Qin, H. Hu, L. You and G. Chen, J. Membr. Sci., 2007, 303, 80-85
- M. N. Islam, K. Tanaka, H. Kita and K. -I. Okamoto, J. Chem. Eng. Jpn., 2006, 39(2), 131-136
- S8. T. A. Centeno and A. B. Fuertes, J. Membr. Sci., 1999, 160, 201-211
- S9. L. Lei, F. Pan, A. Lindbråthen, X. Zhang, M. Hillestad, Y. Nie, L. Bai, X. He and M. D. Guiver, *Nat. Commun.*, 2021, 12:268, 1-9
- S10. H. Richter, H. Voss, N. Kaltenborn, S. Kamnitz, A. Wollbrink, A. Feldhoff, J. Caro, S. Roitsch and I. Voigt, Angew. Chem. Int. Ed., 2017, 56, 7760-7763
- S11. Q. Wang, L. Yu, H. Nagasawa, M. Kanezashi and T. Tsuru, *J Am Ceram Soc.*, 2020, 103, 4473–4488
- S12. Q. Wang, L. Yu, H. Nagasawa, M. Kanezashi and T. Tsuru, Sep. Purif. Technol., 248, 117067

- S13. M. Nordio, J. Melendez, M. van Sint Annaland, D. A. P. Tanaka, M. L. Tanco and F. Gallucci, *Int. J. Hydrogen Energ.*, 45 (53), 28876-28892
- S14. M. Nordio, J. A. Medrano, M. van Sint Annaland, D. A. P. Tanaka, M. L. Tanco and F. Gallucci, *Energies*, 2020, 13(14), 3577
- S15. I. Kumakiri, K. Tamura, Y. Sasaki, K. Tanaka and H. Kita, *Ind. Eng. Chem. Res.*, 2018, 57, 5370–5377
- S16. L.-L. Lee and D.-S. Tsai, J Am Ceram Soc., 1999, 82 (10), 2796-800
- S17. H. R. Lee, M. Kanezashi, Y. Shimomura, T. Yoshioka, and T. Tsuru, *AIChE J.*, 2011, 57, 2755-2765