Electronic Supplementary Information

Tuning the electronic and magnetic properties of lizardite clay by chemical substitution

Marta S.S.Gusmão,^{*a,b} Angsula Ghosh,^a Ilaria Siloi,^d Marco Fornari ^{c,e} and Marco Buongiorno $Nardelli^{b,e,f}$

Formation Energy 1

e 1: Formation Energy for $A_3(Si_2O_5)X_4$, where X=OH, F, Cl, using					
		Formation Energy (eV)			
	Α	$A_3(Si_2O_5)OH_4$	$A_3(Si_2O_5)F_4$	$A_3(Si_2O_5)Cl_4$	
	Mg	-63.79	-70.80	-53.11	
	Ca	-65.35			
	Mn	-61.30	-67.67	-49.96	
	Fe	-62.17	-68.04	-51.43	
	Ni	-59.57	-65.00	-51.34	
	Zn	-54.21			

Table g Eq.(1)

 $\mathbf{2}$ Crystal Structure of the New Compounds after calculations with density functional theory (DFT)

Figure 1: Crystal structure of $A_3(Si_2O_5)F_4$, where A = Mg, Mn, Fe and Ni.

^{0a}Department of Physics, Federal University of Amazonas, Manaus, Brazil. Email: mgusmao@ufam.edu.br

^{0b}Department of Physics, University of North Texas, Denton, TX 76203, USA

⁰^cDepartment of Physics and Science of Advanced Material Program, Central Michigan University, Mt. Pleasant, MI 48859, USA.

^{0d} Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90007, USA

⁰^e Center for Materials Genomics, Duke University, Durham, NC 27708, USA

⁰f Santa Fe Institute, Santa Fe, NM 87506 USA

Figure 2: Crystal structure of $A_3(Si_2O_5)Cl_4$, where A = Mg, Mn, Fe and Ni.