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S1. Parity plots

Fig. S1 Parity plot of the test set from every 50 sets for the direct learning (DL) model, 

the best model (300-TL-100) and the worst model (300-TL-0.25). Actual value of self-

diffusion coefficients (Ds / 10-8) of a) DL model, b) 300-TL-100, and c) 300-TL-0.25. 

Logarithmic value of self-diffusion coefficients (log Ds/10-8) of d) DL model, e) 300-

TL-100, and f) 300-TL-0.25.
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S2. Performance evaluation with RMSE and MAE metrics

RMSE = 

1
𝑛
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∑
𝑖 = 1

(𝑦𝑖 ‒ �̂�𝑖)2 (𝑦𝑖 :𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒, �̂�𝑖 :𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)
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∑
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|𝑦𝑖 ‒ �̂�𝑖| (𝑦𝑖 :𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒, �̂�𝑖 :𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)

 are self-diffusion coefficients that converted into log scale and divided 𝑦𝑖 𝑎𝑛𝑑, �̂�𝑖

by 10-8 (m2/s). For example, .
𝑦𝑖 =  𝑙𝑜𝑔

𝐷𝑆, 𝑡𝑟𝑢𝑒 (𝑚2/𝑠)

10 ‒ 8 (𝑚2/𝑠)

Fig. S2 Results of transfer learning task from adsorption (gas uptake) to diffusion 

property (self-diffusion coefficient). Top 2 cases and bottom 2 cases among the 12 TL 

models for each data size (100, 300, and 500) in respect to MAE.
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Fig. S3 Scatter plot between TL and DL of every 50 sets for the best source (100 bar) and 

the worst source (0.25 bar). a) RMSE and b) MAE

Fig. S4 Aspect of change in performance improvement as data size increases in respect 

to a) RMSE and b) MAE as an evaluation metric. The comparison was held with the TL 

model with the pre-trained model at 100 bar (i-TL-100) that generally performs well 

regardless of the data size. The markers denote the median value and the blurred region 

denotes the range between 1st and 3rd quartile.
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S3. Details on simulation time
Simulation time for self-diffusion calculation (molecular dynamics simulation 

with 8 cpu cores) and gas uptake calculation (monte carlo simulation with single GPU 

core) are considered for 1563 CoRE MOF structures that we used in this work. Due to 8 

cpu cores were used for self-diffusion coefficient calculations, total simulation time was 

obtained with 8 * total wall time. From the calculations, the averaged simulation time of 

self-diffusion coefficients calculations is 63628.79 seconds per structure. Meanwhile, the 

averaged simulation time of the gas uptake calculations is 35.01 seconds per structure. 

Therefore, self-diffusion calculation need 1817 times more time than gas uptake 

calculations. Comparing the case of size 300 with pre-trained model (pre-trained with 

23,845 gas uptake results) and size 500 without pre-trained model, the computational can 

be saved as 62.62% in the size 300 with pre-trained model (Table S1). Given that the 

pre-training time is very small compared to the computational time, the training time was 

not considered.

Case 1 

(size 300 with pre-trained 

model)

Case 2 

(size 500 without pre-

trained model)

Self-diffusion 

coefficient calculations

300 x 63628.79s

= 19088637s

500 x 63628.79

= 31814395s

Gas uptake 

calculations

23,845 x 35.01s

= 834813.45s

0 x 35.01s

= 0s

Total time 19923450.45s 31814395s

Table S1 Simulation time calculation for size 300 with pre-trained model and size 500 

without TL (DL)
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S4. Details on finding an optimal pressure candidate for transfer 

learning
We tried to find a new optimal pressure candidate for pre-training in the context 

that the higher similarity in the PFI, the higher performance in the TL can be guaranteed. 

As such, we tried to find a meaningful relationship between the similarity of PFI and 

pressures. As we mentioned in manuscript, the similarity of PFI was measured as an 

Euclidean distance, so we assume that there is an arbitrary function that takes pressure 

related values as the domain and similarities as the range (y = f(x), y = similarity of PFI, 

x = logarithmic value of the pressure), there are two local minima in the function (see 

Fig. S5a). Given that at least quartic function is required to have two local minima, we 

obtained the polynomial regression model of degree 4 from our results using Python 

library, scikit-learn1 (lightblue line in Fig. S5a). The root that gives the global minimum 

is 93.6324 bar, so 93.6324 bar was selected as new optimal pressure candidate. Thus, a 

new pre-trained model with the methane uptakes at 93.6324 bar was prepared and 300-

TL-93.6324 model was constructed. Since the gap between the Euclidean distance 

between 93.6324 bar and 100 bar is only 0.002 (93.6324 bar: 0.303, 100 bar: 0.305), there 

is no drastic improvement in performance, but still there was a slight improvement and 

this can demonstrate that the Euclidean distance between PFI vectors can be an alternative 

metric to estimate whether the source property is proper for TL tasks to predict the target 

property. As shown in Fig. S5b, although the median of R2 score of 300-TL-93.6324 is 

almost the same as 300-TL-100 that was regarded as the best model, the minimum value 

(lowest bar) of 300-TL-93.6324 is much higher than that of 300-TL-100 and even the 3rd 

quartile (highest bar) of 300-TL-93.6324 is slightly higher than that of 300-TL-100. In 

addition, if the evaluation indicator is changed as RMSE, the median of 300-TL-93.6324 

was lower than that of 300-TL-100 (see Fig. S5c). 
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Fig. S5 Suggestion of a new pressure candidate for high performance in the TL task from 

the relationship between similarity of feature importance and pressure condition of 

simulation to compute gas uptakes. a) Polynomial regression model and the data that 

consists of euclidean distances and pressure. The global minimum appeared between 80 

bar and 100 bar. Box plot of b) R2 score and c) RMSE of 50 sets with the DL model, 300-

TL-93.6324 (new candidate), 300-TL-100 (best case), and 300-TL-0.25 (worst case).
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S5. Details on energy descriptors
Energy descriptors were generated by two steps, generation of energy grids and 

converting energy values of each grid point as a histogram. 

First, the interaction energy of each grid point was computed using the Lennard-

Jones (LJ) 12-6 potential model (Equation 1).  is the distance between the guest molecule 𝑟

(CH4 in this case) and the atoms of the host frameworks (MOFs in this case). The force 

field parameters  and  for both of the guest molecule and the atoms of the host 𝜀 𝜎

frameworks are obtained from Universal Force Field (UFF)2 and the Lorentz-Berthelot 

mixing rule was used as a combining rule.

 (Equation 1)
𝑈𝐿𝐽(𝑟) =  4𝜀[(𝜎

𝑟)12 ‒ (𝜎
𝑟)6]

Given that large space between grid points can be generated if the grid sizes were selected 

as a fixed value (such as 24 x 24 x 24) as previous works did,3 we computed energy values 

for every 1 Angstrom. For example, the energy values of 3000 grid points were computed 

for a framework with cell size 10 x 15 x 20. The energy for each grid point was computed 

as Kelvin units. 

Second, we obtained the distribution of the energy values from the histogram. To 

determine a consistent energy range for every framework, we set the cutoff for energy 

values as -4000K to 5000K. The energy below -4000K is converted into -4000K and the 

energy above 5000K is converted into 5000K. Then, we obtained a histogram with the 

converted results and the number of bins as 50. The counts for each bin were normalized 

as the sum of counts becomes 1 because the number of grid points was different for every 

framework.
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