Exploring the Oxygen Evolution Electrocatalysis of an Amine-Based Cobalt Metal-Organic Framework

Jade Nadine S. Ang, Manjunath Chatti, Khang N. Dinh, Stuart R. Batten,* Alexandr N. Simonov* and David R. Turner*

Supporting Information

Contents

1.	Analytical Data	2
2.	Crystallographic Details	4
3.	Characterisation Data	5
4.	Comparison of Co-MOF-Derived Electrocatalysts	11

1. Analytical Data

Figure S1. ¹H NMR spectra of H₃2·3HCl·2H₂O.

Figure S2. ¹³C NMR spectra of H₃2·3HCl·2H₂O.

Figure S3. Thermogravimetric analysis of as-synthesized a) Co-TMBT-MOF and b) Zn-TMBT-MOF.

2. Crystallographic Details

Identification code	Co-TMBT-MOF	Zn-TMBT-MOF
Empirical formula	$C_{51}H_{54}CoN_4O_9$	C _{55.5} H _{74.5} CIN _{5.5} O ₁₆ Zn ₂
Formula weight	1053.05	1240.89
Temperature/K	123.00(10)	100(2)
Crystal system	monoclinic	trigonal
Space group	P21/n	R-3c
a/Å	11.16580(10)	30.933(4)
b/Å	31.0750(3)	30.933(4)
c/Å	15.70250(10)	74.300(15)
α/°	90	90
β/°	95.0970(10)	90
γ/°	90	120
Volume/ų	5426.87(8)	61568(21)
Z	4	36
$\rho_{calc}/g \text{ cm}^{-3}$	1.130	1.205
µ/mm⁻¹	2.907	0.802
F(000)	2228	23436
Crystal size/mm ³	0.2 × 0.15 × 0.1	$0.1 \times 0.08 \times 0.05$
Radiation	Cu Kα (λ = 1.54184)	Synchrotron (λ = 0.7108)
20 range for data collection/°	8.02 to 155.116	1.874 to 50
Index ranges	-14 ≤ h ≤ 12, -34 ≤ k ≤ 39, -19 ≤ l ≤ 19	-36 ≤ h ≤ 36, -35 ≤ k ≤ 35, -88 ≤ l ≤ 88
Reflections collected	110024	233727
Independent reflections	11436 [R _{int} = 0.0949, R _{sigma} = 0.0391]	12064 [R _{int} = 0.0809, R _{sigma} = 0.0257]
Data/restraints/parameters	11436/0/593	12064/0/480
Goodness-of-fit on F ²	1.044	1.203
Final R indexes [I≥2σ(I)]	R ₁ = 0.0833, wR ₂ = 0.2331	$R_1 = 0.1022$, $wR_2 = 0.3061$
Final R indexes [all data]	R ₁ = 0.0944, wR ₂ = 0.2447	$R_1 = 0.1246$, $wR_2 = 0.3322$
Largest diff. peak/hole / e Å ⁻³	0.83/-0.60	1.18/-0.44
CCDC	2220214	2220213

Co-TMBT-MOF: No restraints were applied to the structural model. The Solvent Mask routine in Olex2 was used to account for electron density that could not be modelled, calculating 72 e⁻ in 331 Å³ per asymmetric unit (equivalent to per formula unit). This is assigned as 1 x DMF and 3 x H₂O (calculated 70 e⁻), in reasonable agreement with TGA and elemental analysis.

Zn-MOF: The aromatics rings were refined using the SHELX AFIX 66/65 commands. It is clear that there is some rotational disorder, although this could not be modelled and the anisotropic atomic models accurately describe the system. Zn2A/B was modelled as disordered using a freely refining variable (22:78 occupancy). The Solvent Mask routine in Olex2 was used to account for electron density that could not be modelled, calculating 180 e⁻ in 869 Å³ per asymmetric unit (equivalent to per formula unit). This is assigned as 1 x Cl⁻, 2.5 x DMF and 6.5 x H₂O (calculated 182 e⁻), in reasonable agreement with TGA and elemental analysis.

3. Characterisation Data

Figure S4. PXRD characterisation of **Co-TMBT-MOF**: (a) calculated data (*black*), experimental data obtained as synthesized (*red*) and after leaving exposed to air for 24 h (*blue*), (b) diffractograms recorded for the **Co-TMBT-MOF**/NF electrode before (*blue*) and after (*magenta*) 20 h OER test at 20 mA cm⁻² in 1 M KOH at 23 ± 2 °C.

Figure S5. Electrocatalytic OER performance of Ni foam electrodes modified with **Co-TMBT-MOF** with loading levels varied from 0.10 to 1.00 mg cm⁻² in 1 M KOH at 23 \pm 2 °C in quasi-stabilised cyclic voltammetry measurements (scan rate 0.005 V s⁻¹; 10th scans),

Figure S6. Electrocatalytic OER performance of Ni foam electrodes modified with **Co-TMBT-MOF** (0.25 mg cm⁻²) in 1 M KOH at 23 \pm 2 °C: (a) quasi-stabilised cyclic voltammetry measurements (scan rate 0.005 V s⁻¹; 10 scans), (b) multicurrent chronopotentiometric plot at increments of 20 mA cm⁻² per 15 min for tests of three independent samples, and (c) cyclic voltammograms (scan rate 0.005 V s⁻¹; 10th stabilised scans) of three independent samples.

Figure S7. SEM/EDS elemental mapping of **Co-TMBT-MOF**/NF after 20 h OER test at 20 mA cm⁻² in 1 M KOH at 23 ± 2 °C.

Figure S8. FTIR spectra of $H_32\cdot 3HCl\cdot 2H_2O$ (green), Co-TMBT-MOF (black), and Co-TMBT-MOF/NF electrode before (*red*) and after (blue) 20 h OER test at 20 mA cm⁻² in 1 M KOH at 23 ± 2 °C.

Figure S9. XPS characterisation of **Co-TMBT-MOF**/NF electrodes before (*orange*) and after (*brown*) 20 h OER test at 20 mA cm⁻² in 1 M KOH at 23 \pm 2 °C: (a) survey, (b) C 1s, (c) O 1s, and (d) N 1s spectra.

Figure S10. SEM images of the as-synthesised Co-TMBT-MOF on a Si wafer at different magnifications.

4. Comparison of Co-MOF-Derived Electrocatalysts

Table S1. Electrocatalytic performance of different materials derived from Co-MOFs for the OER in 1 M KOH at ambient temperature.

MOF	Ligand	Substrate ^a	MOF loading / mg cm ⁻²	OER current density / mA cm ⁻² at a specified OER overpotential / V	Tafel slope / V dec ⁻¹	Ref
Co-TMBT-MOF	1,4,7-Tris(4'- methylbiphenyl-4- carboxylic)-1,4,7-TACN	NF	0.25	20 at 0.29 ± 0.01	53	Present study
Co-BPDC-MOF (in-situ)	Biphenyl-4,4'- dicarboxylic acid	NF	4.33	20 at <i>ca</i> 0.29	74 ^b	1
Co-BPDC-MOF (powder)	Biphenyl-4,4'- dicarboxylic acid	NF	Not reported	20 at <i>ca</i> 0.40	109 ^b	1
Fe-BTTA-MOF	2,5-bis(1H-1,2,4-triazol- 1-yl) terephthalic acid	CFP	0.50	10 at <i>ca</i> 0.38	Not reported	2
FeCo-BTTA- MOF	2,5-bis(1H-1,2,4-triazol- 1-yl) terephthalic acid	CFP	0.50	10 at <i>ca</i> 0.30	42 ^b	2
FeCo-BTTA- MOF	2,5-bis(1H-1,2,4-triazol- 1-yl) terephthalic acid	NF	0.50	10 at <i>ca</i> 0.23	42 ^b	2
Fe/Co(1:2)- BDC-MOF	1,4-benzenedicarboxylic acid	GC	Not reported	10 at <i>ca</i> 0.31	Not reported	3
Co-BTC-Blm- MOF	benzene tricarboxylic acid, benzimidazole	GC	0.25	10 at <i>ca</i> 0.28	Not reported	4
(Ni ₂ Co ₁) _{0.925} - Fe _{0.075} -MOF	1,4-benzenedicarboxylic acid	NF	0.54	10 at <i>ca</i> 0.26	Not reported	5

^aNF, nickel foam; CFP, carbon fiber paper; GC, glassy carbon. ^b Derived from non-steady-state voltammetric data.

References

- 1. J. Yu, Y. Cao, Q. Liu, Y. Luo, Y. Liu, X. Shi, A. M. Asiri, T. Li and X. Sun, *ChemNanoMat*, 2021, **7**, 906-909.
- 2. J. Tian, F. Jiang, D. Yuan, L. Zhang, Q. Chen and M. Hong, *Angew. Chem. Int. Ed.*, 2020, **59**, 13101-13108.
- 3. K. Ge, S. Sun, Y. Zhao, K. Yang, S. Wang, Z. Zhang, J. Cao, Y. Yang, Y. Zhang, M. Pan and L. Zhu, *Angew. Chem. Int. Ed.*, 2021, **60**, 12097-12102.
- 4. R. K. Tripathy, A. K. Samantara and J. N. Behera, *Dalton Trans.*, 2019, 48, 10557-10564.
- 5. Q. Qian, Y. Li, Y. Liu, L. Yu and G. Zhang, *Adv. Mater.*, 2019, **31**, 1901139.