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CPE Equilibration

Correlation times for conjugated polyelectrolyte (CPE) structural properties are shown in

Figure S1. Each decorrelation time is the result of a single trajectory and therefore some

uncertainty is expected in the estimated values. Also, specific decorrelation metrics will

exhibit different sensitivities to the specifics of the morphology, making the uncertainty

variable as a function of concentration. The results show that the radius of gyration, end-to-

end length, and fiber thickness of CPEs underwent at least one decorrelation time over the

course of each simulation (150 kτ for poor solvent, 50 kτ for good solvent). The end-to-end

vector (e.g. the rotation of the chains) did not decorrelate over the length of the simulations.
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Figure S1: Decorrelation times of computed CPE properties during the production run (50
kτ), after 100 kτ of equilibration. The dotted lines correspond to good solvent; solid lines
correspond to quenched poor solvent; and the dashed lines correspond to compressed poor
solvent. The end-to-end vector metric is for a normalized vector, capturing the rotation of
the polymer chains.

Morphology Characterization

CPE morphologies require characterizations on multiple length scales to understand how

morphology impacts electronic mobility. Partial structure factor plots of the anisotropic

backbone beads in Figure S2 show the expected scaling behavior of the position and height

of the PE peak in good solvent, and the presence of a strong primary PE peak with a

harmonic at higher q in poor solvent. The positions of the poor solvent peaks, as estimated
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using the fit from Equation 12, are shown in Figure S3. Their scaling behavior is shown in

Figure S4 and S6, showing a transition from sub-0.5 scaling, to 0.2 scaling in the quenched

morphologies, and ∼ 0.3 scaling in the compressed morphologies. The π-stacking distance

in the structure factors was expected to be at ∼ 1σ, however monomers in π-stacked chains

were often offset from each other, increasing the average center-to-center distance between

anisotropic beads in simulations to approximately ∼ 1.1σ.
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Figure S2: Structure factor of the good solvent and poor solvent morphologies vs. concen-
tration. The poor solvent plots contain both the compressed (purple) and quenched (orange)
results, overlaid. All q-values are divided by 2π to aid interpretation, and 1 σ ∼ 0.5 nm in
real units.
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Figure S3: Structure factor fit parameters for each poor solvent CPE simulation. Parameters
are from Equation 12 (see main text)

Figure S4: Positions of the primary and secondary PE peaks vs. concentration. Solid and
dashes lines correspond to quenched and compressed morphologies, respectively.

Figure S5 shows the structure factor for all beads in the CPE chain (backbone, sidechain,

and pendant ion beads), showing the loss of intensity in the secondary harmonic PE peak

when the full chain is present (compare to Figure 3 in main text). However, the position of

the secondary harmonic appears to be unchanged.
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Figure S5: Structure factor for the entire polymer (backbone, sidechain, and pendant cation
beads) for the compressed simulations showing the loss of intensity from the secondary CPE
peak. Lines connecting points are guides for the eye.

Figure S6: Plot of Log(q) vs Log(concentration) for the primary and secondary PE peaks.
The quenched data is fit to a quadratic function, the compressed data is fit to a line.

The radial distribution functions (Figure S7) provide a comparison of the local morpho-

logical structure as a function of concentration. The quenched and compressed morphologies

are very similar. For the 10% w/v poor solvent morphologies, all cross-pair correlations (e.g.

1:4, 1:5, 4:5) decrease together due to counterion condensation, and a large free volume exists
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between chains. In contrast, for 50% w/v poor solvent morphologies, the polymer-ion cross-

pair correlations (e.g. 1:4, 1:5) show out-of-phase dependence with the self-pair correlations

(e.g. 1:1, 4:4, 5:5) indicating that there is a microphase separation of ion-rich regions and

polymer rich regions. Interestingly, at 50% w/v, the ion-rich region is dense and confined

enough such that there is a positive peak in the counterion (5:5) pair correlation function at

1-3 σ.

Figure S7: Radial distribution functions of pairs of bead types. Bead types are as follows: 1
- backbone, 4 - pendant cation, 5 - counter-anion. All plots are averages over 51 snapshots.
*The quenched data is overlaid in gray on the compressed plot to simplify quantitative
comparison.

8



Bundling Algorithm

Since, to our knowledge, there are no established algorithms for computing spatially hetero-

geneous estimations of fiber thickness in anisotropically stacking polymer systems, we have

devised a bundling algorithm to provide such estimations. At a high level, the bundling

algorithm can be described by the following four steps, with each step shown in Figure S1a

with colors representing each iteration of the algorithm, starting with red and ending with

green. The final results of the algorithm are shown in Figure S1b.

For each monomer in the morphology:

1. Block off the nblock neighboring monomers on the current chain (solid colored lines in

Figure S1a). This prevents recounting monomers in the same chain as contributing to the

fiber thickness.

2. If there are more than nsize monomers in the current list of monomers, limit the size

of all continuous blocks of monomers on the same chain to nsize monomers (black X’s in

Figure S1a). This step restricts the width of the search for new monomers (step 4), keeping

the measured fiber thickness roughly parallel to the direction of π-stacking.

3. For each separate continuous block of monomers in the current list, found in step 2,

add one to the calculated fiber thickness.

4. Look for new monomers within rcut of the current list of monomers (semi-transparent

ellipses in Figure S1a). New monomers become the current list of monomers in Step 1 (filled

ellipses in Figure S1a). If no new monomers are found, exit.

Repeat steps 1-4 until no new monomers are found. In the example, the red monomer in

Figure S1a would have a fiber thickness of six because six blocks of monomers are found by

the algorithm: one on the first (red) iteration, two on the second (orange) iteration, two on

the third (yellow) iteration, and one on the fourth (green) iteration. This process is repeated

independently for each individual monomer in the system. The results of this algorithm for

several monomers are shown in Figure S1b.

The specific parameter values used in the algorithm above (nblock = 5, nsize = 3 monomers,
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rcut = 1.7 σ) were optimized to produce estimates of fiber thickness consistent with a visual

examination of the poor-solvent MD trajectories. A more detailed pseudocode is presented

below.

for monomomer m:

avail = ones(n, dtype = bool) # monomers available to be added to the fiber

newnet = zeros(n, dtype = bool) # monomers to be added in the next iteration

newnet[m] = 1

fiber = 0 #fiber thickness

while sum(newnet) != 0:

js = where(newnet == True)[0] #current monomers are "js"

# Step 1. Block off n_block = 5 monomers along the chain

for j in js:

for monomers in j +/- 5 along the same chain:

avail[monomers] = 0

# Step 2. Restrict block size to n_size = 3 monomers

j = 0

while j < len(js)-3:

if js[j+3]-js[j] == 3 and both monomers are on the same chain:

center = center of the continuous block

delete js > 1 away from center

# Step 3. Increase fiber thickness 1 for each block

fiber += 1

for j in range(len(js)-1):

if (js[j+1]-js[j]) > 2:

fiber += 1

# Step 4. Find new monomers

newnet = zeros(n, dtype = bool) #clear new monomers
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for j in js:

newnet = (A[j] & avail) #A = n x n Adjacency matrix

return(fiber)

Figure S8: Snapshot of a poor-solvent morphology with a) a demonstration of the bundling
algorithm operating on a single monomer (red circle), and b) the final result of the bundling
algorithm on all monomers in the snapshot.

Network Structure Characterization

The time dependence of the number and size of the networks is shown in Figure S9. The

good solvent simulations (dotted lines) appear equilibrated, as do the poor solvent com-

pressed simulations (dashed lines). The quenched morphology (solid line) appears to be
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deaggregating at 10% and 15% w/v. We still chose to analyze the final 100-150 kτ of these

simulations for the sake of consistency, and because we want to analyze a kinetically trapped,

highly connected network.

Figure S9: Time dependence of the largest network size (left) and the number of networks
(right) for all simulations. Solid lines correspond to quenched simulations; dashed lines
correspond to compressed simulations; dotted lines correspond to good solvent simulations.
Data was taken every 1 kτ , and the moving average over nine kτ is plotted.

The network connectivity of the CPE chains is an important descriptor for understanding

electronic mobility. Figure S10 shows that the number and sizes of the networks in poor

solvent are insensitive to the electronic coupling threshold value over the physical range of

threshold values. This indicates that these networks are well connected through π-stacking,

and the individual networks are well separated through-space, providing confidence in this

metric to describe poor-solvent morphologies. In contrast, the number and sizes of networks

in good solvent morphologies are very sensitive to threshold because the inter-chain networks

are neither well connected via π-stacking (only coming in contact by fluctuations) nor are

they well separated through-space.
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Figure S10: The number of networks (top) and the size of the largest network as a fraction
of total monomers in the system (bottom) for several threshold electronic coupling values.
The maximum electronic coupling produced by π-stacking in our model is ∼ 0.08 eV, so any
value above this results in exclusively independent interchain networks.

To further aid in the characterization of the network structure, a UMAP projection of the

poor solvent morphologies was generated to visualize how well the poor solvent morphologies

are connected. In this case, UMAP was used to take the distances between anisotropic

backbone beads (3D with periodic boundaries) and project them down to 2D without periodic

boundaries. Note that the UMAP algorithm is stochastic and does not rigorously preserve

all connectivity of the higher dimensional object.

The UMAP projections show that at 10% and 20% w/v, the quenched morphology is

more connected than the compressed morphology in agreement with the analysis of networks

above. However, at 50% w/v, the compressed morphology has regions of thicker fibers

connected by stronger bridges, whereas the quenched morphology has a larger number of

weaker bridges across its morphology, in agreement with the fiber thickness results (Figure

4). These results help explain why the HOMO IPRs in the compressed morphology are larger

than in the quenched morphology, resulting in a higher mobility.
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Figure S11: UMAP projection of the quenched and compressed morphologies at 10%, 20%,
and 50% w/v. Monomers in the same chain have similar colors and each monomer is semi-
transparent to make overlapping chains more apparent.

14



Electronic Structure Characterization

The ability of ions to alter electronic transport in CPEs is a key feature enabling them to

be used as mixed ionic-electronic conductors. Therefore, the electrostatic disorder induced

on the backbone of the CPE was calculated to quantify the magnitude of the disorder and

its dependence on morphology. Figure S12a shows that there is a net positive electrostatic

potential on the backbone beads, consistent with the ability of CPEs pendant ions to enable

self-doping. Figure S12b shows that the predicted magnitude of the electrostatic disorder

is small (< 1kBT ) for all morphologies, and does not significantly impact the electronic

properties of the CPEs. For comparison, a Gaussian energetic disorder (associated with

disorder not present in the CG model, e.g. solvent polarization) of up to 0.1 eV was added

to each monomer but had no qualitative impact on the conclusions.

Figure S12: a) Average electrostatic potential energy of anisotropic backbone beads, and b)
their standard deviation. The average electrostatic energy is typically positive because the
pendant ions are closer to the backbone than the counteranions. This situation is reversed in
good solvent at high concentrations as counteranions diffuse closer to the backbone than the
pendant cations which are kept at a distance by the side chains. This counterion diffusion in
good solvent also increases the standard deviation of the backbone potential energy, whereas
in poor solvent the π-stacking reduces how close counter-anions can diffuse towards the
backbone (see RDFs, Figure S7).

To aid visualization of how the electrostatic potential varies across a morphology, Figure
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S13 shows an example morphology with each backbone bead colored by its electrostatic

potential.

Figure S13: Representative configurational snapshot of the 20% w/v quenched morphology
with backbone beads colored by electrostatic potential. Only backbone beads are shown for
clarity. The CPE pendant ions are positive, causing the average electrostatic potential on a
backbone bead to be positive.

The model presented in this work does not include any onsite energy disorder in the

Hamiltonian except for electrostatic induced disorder. Therefore, additional random Gaussian-

distributed disorder was added to each monomer to assess the impact of additional onsite

disorder on the IPR and final transport properties. The results of this analysis are shown

in Figure S14. The addition of 0.1 eV disorder was found to have a moderate impact on

mobility, while disorder of 0.3 eV was found to strongly reduce mobility. Figure S17 also

shows which pairs of orbitals contribute most to the mobility of a morphology, revealing that

long-distance hops (up to half the box length) contribute most to the calculated mobility of
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the system, even when additional disorder is added to the morphology.

Figure S14: The average mobility and IPR for two morphologies (quenched 20% w/v and
compressed 50% w/v) with added amounts of Gaussian onsite disorder. Results are averaged
over 50 kτ .

The electronic mobility (Eq 11) depends on the hopping rates and populations of the

HOMOs in a morphology, which depend on the overlap between two MOs, their IPR, and

the energy difference between those MOs (Eq 5). Figures S15 and S16 show the IPR of the

morphologies, revealing that the HOMOs of the more concentrated poor-solvent morpholo-

gies are much more delocalized than the good solvent or more dilute morphologies. The

DOS of the morphologies also shows that these more delocalized MOs are also more sparsely

populated, with the HOMOs tail extending almost 0.2 eV higher than in the good solvent

case, increasing the energy gap between orbitals expected to participate in electron transfer.

The mobility results indicate that the delocalization of the HOMOs increases the mobility

more than the tighter density of states. To further quantify the trends, the average IPR and

DOS of the MOs observed to strongly participate in transport (i.e. MOs in the top 0.25 eV

of the DOS) are plotted in Figure S16. The fact that the crossover point of the quenched and

compressed average IPRs also corresponds to the crossover point of the mobilities indicates

that the IPR of the HOMOs plays a significant role in determining electronic transport in

CPEs.

It is expected that the calculated mobility for systems containing ten dopants will be

larger than that of the mobility from one dopant, as the ten dopant system is able to reach
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MOs further from tail of the density of states, which also typically have higher IPRs. This

effect is shown in Figure 7 (main text), and the mechanism is supported by the fact that

when the leading edge of the density of state is higher in energy, the difference in mobility

between one and ten dopants also grows.

Figure S15: Inverse Participation Ratio (IPR) and density of states (DOS) for each mor-
phology, averaged across 51 snapshots. The upper plots show all 6400 MO (binned every
0.1 ev); the lower plots show only the MOs with energy > 1.5 eV (binned every 0.005 eV,
to provide additional clarity about the states contributing to charge transport).
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Figure S16: The average IPR (left) and total number of states (right) within 0.25 eV of the
HOMO-1 orbital. Results are averaged over the 50 kτ production run. The HOMO-1 was
chosen as a reference point because sometimes the HOMO was separated from the bulk of
the DOS, making it an inconsistent reference point.

Figure S17: The contributions of hops at various distances (Rij) to the total electronic
mobility. The mobility between all pairs of MOs i and j are binned by distance in the
direction of the electric field (F) and summed. for each axis in each snapshot, and then
averaged across 50 kτ . The column with 0.0 eV of disorder is the same result as presented
in the main text. The other disorder values correspond to the same results as Figure S14.
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CPE Diffusion

The diffusion constant for the CPE center of mass over the 5-20 ktau timescale is shown in

Figure S18. In good solvent, CPE chains are unaggregated and free to move independently

of each other on long time scales, making diffusion fast relative to poor solvent CPEs. In low

density poor solvent (<20% w/v), CPE diffusion is faster in compressed simulations than

quenched simulations, presumably because the chains are less connected and therefore their

diffusion is less restricted. At high density (>30% w/v) the trend is reversed, presumably

because the compressed chains are more tightly bound (evidenced by their thicker fibers,

Figure 4 (main text), and supported by UMAP analysis, Figure S11) causing each chain’s

motions to be more strongly restricted by the other chains in the fiber.

Figure S18: Polymer diffusion constant vs. concentration, as estimated via the mean squared
displacement values between 5 - 20 kτ . Diffusion was approximately 2-5 faster at < 5 kτ .

Example MSD vs. Time plots of the ions and polymers are presented in Figure S19.
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Figure S19: Anion (top) and polymer (bottom) Mean Standard Displacement (MSD) vs.
Time. The MSD along the x, y, and z axes are labeled x2, y2, and z2 respectively. The
distance MSD is labeled Dist2. The points used to calculate the diffusion constant via a best
fit line are labeled with a blue cross. The fitted diffusion constant is annotated on the plot,
and a line with the same slope (passing through the origin) is labeled as Diffusion Fit.

While not explicitly presented in the main text, we note that the persistence lengths

of CG simulations are in agreement with previous results and physical expectations. The

intrinsic persistence lengths of the modeled CPEs is expected to be six σ based on the three-

body angle constant between neighboring backbone monomers. As expected, the inter-chain

electrostatic repulsion led to the chains being slightly stiffer at 10% w/v ( 7.5 σ), returning
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to their intrinsic persistence length when the electrostatic correlation length (the length

at which electrostatic interactions are screened) decreased below this length scale. [See

Dobrynin, Andrey V., and Michael Rubinstein. “Theory of polyelectrolytes in solutions and

at surfaces.” Progress in Polymer Science 30.11 (2005): 1049-1118. ]
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