## **Supplementary Information**

## Chemiresistive $NH_3$ detection at sub-zero temperatures by polypyrrole loaded $Sn_{1-x}Sb_xO_2$ nanocubes

Nirman Chakraborty and Swastik Mondal\*

CSIR Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India

Corresponding author: swastik\_mondal@cgcri.res.in

Table 1: Lattice parameters from Le'Bail refinement

| Sample                         | ATO_0.05             | ATO_0.05_PPY         |
|--------------------------------|----------------------|----------------------|
| Space group                    | P4 <sub>2</sub> /mnm | P4 <sub>2</sub> /mnm |
| $a(\text{\AA}), c(\text{\AA})$ | 4.740(2), 3.190(2)   | 4.740(2), 3.189(2)   |
| $\alpha$ (degrees)             | 90                   | 90                   |

Table 2: Hall coefficient and carrier mobility values of all samples.

| Sample       | n/p type         |                           | Carrier mobility (m <sup>2</sup> /V.s)                  |
|--------------|------------------|---------------------------|---------------------------------------------------------|
|              | 200K             | 250K                      |                                                         |
| ATO_0.05     | n type           | n type                    | $3.370 \times 10^{-3}$ (electrons)                      |
| PPY          | p type           | p type                    | 1.51210 <sup>-3</sup> (holes)                           |
| ATO_0.05_PPY | (p type)         | (p type)                  | $1.370 \times 10^{-3}$ (electrons) (~2 times more than  |
|              | Hall             | Hall                      | ATO_0.05)                                               |
|              | coefficient      | coefficient               | $3.512 \times 10^{-3}$ (holes) (~2 times more than PPY) |
|              | 0.00115          | 0.00413                   |                                                         |
|              | $\Omega mT^{-1}$ | $\Omega \mathrm{mT}^{-1}$ |                                                         |

Table 3: Sensor composition from ICP analysis.

| Sample   | Sb:Sn |
|----------|-------|
| ATO_0.03 | 0.025 |
| ATO_0.05 | 0.048 |

Table 4: Sensor coating details.

| Sensor       | Average coating thickness (µm) |
|--------------|--------------------------------|
| ATO_0.03_PPY | 32                             |
| ATO_0.05_PPY | 35                             |



Figure S1: Room temperature powder X-ray diffractograms of antimony doped tin oxide samples (ATO\_0.03 and ATO\_0.15) and polypyrrole loaded antimony doped tin oxide (ATO\_0.03\_PPY) sample. Formation of unwanted phases in ATO\_0.15 has been shown by red circling the peaks related to that phase.



Figure S2: Arrangement for low temperature ammonia sensing.



Figure S3: Low temperature enclosure for where the sensor has been placed.



Figure S4: Temperature detection during cooling of sensor enclosure.



Figure S5: 20 ppm ammonia sensing responses of ATO\_0.03\_PPY sample at -21°C.



Figure S6: Surface EDX spectrum of polypyrrole (PPY) sample.



Figure S7: Surface EDX spectrum of polypyrrole loaded antimony doped tin oxide (ATO\_0.05\_PPY) sample.



Figure S8: Room temperature FTIR spectra of antimony doped tin oxide (ATO\_0.05), polypyrrole (PPY) and polypyrrole loaded antimony doped tin oxide (ATO\_0.05\_PPY) samples.



Figure S9: XPS survey scan of (a) antimony doped tin oxide (ATO\_0.05) (b) polypyrrole (PPY) and (c) polypyrrole loaded antimony doped tin oxide (ATO\_0.05\_PPY) samples respectively.



Figure S10: XPS core level (a) C 1s (b) Sn 3d (c) O1s and Sb 3d spectra of antimony doped tin oxide (ATO\_0.05) sample.



Figure S11: DLS pattern of antimony doped tin oxide (ATO\_0.05) sample.



Figure S12: NMR spectra of (a) polypyrrole sample (PPY) and (b) polypyrrole loaded antimony doped tin oxide (ATO\_0.05\_PPY) sample.



Figure S13: Low temperature DSC curves of polypyrrole (PPY) and polypyrrole loaded antimony doped tin oxide (ATO\_0.05\_PPY) samples.



Figure S14: Simultaneous TGA and DSC plots (room temperature to 1000°C) of (a) polypyrrole (PPY) ["1" represents onset of polymer decomposition and "2" represents formation of decomposition products] and (b) polypyrrole loaded antimony doped tin oxide (ATO\_0.05\_PPY) ["1" represents onset of polymer decomposition and "2" represents pure ATO\_0.05 sample with no polymeric remains] in air medium.



Figure S15: Dynamic sensing response curves (showing repeatability upto 5 cycles) of ATO\_0.05\_PPY sensor at different temperature to 20 ppm ammonia gas. The best results have been achieved for sensing at -21°C.



Figure S16: Sensing response vs. ammonia concentration calibration curve for ATO\_0.05\_PPY sensor at room temperature. The curve shows linear correlation upto 50 ppm ammonia at room temperature.



Figure S17: FESEM color mapping of ATO\_0.05\_PPY sample highlighting distribution of Sn, Sb and N (in an area of  $3.43 \times 2.57 \ \mu m^2$ ). Elemental mapping is conducted on pellets formed out of powder samples. Sb is shown in red color (black represents other elements). N is shown in green color and Sn is shown in purple color.



Figure S18: Dynamic sensing responses to 20 ppm ammonia at room temperature by (a) ATO\_0.05 sensor (b) PPY based sensor.



Figure S19: Dynamic sensing responses of ATO\_0.05\_PPY sensor at (a) room temperature (b) - 78°C showing saturation.



Figure S20: (a-d) FESEM images depicting distribution of Sb doped  $SnO_2$  nanocubes and PPY network in ATO\_0.05\_PPY sample.