Supporting Information

Hydrogel- and Organohydrogel-based Stretchable, Ultrasensitive, Transparent, Room-temperature and Real-time NO₂ Sensors and the Mechanism

Yaoming Wei^a, Hao Wang^a, Qiongling Ding^a, Zixuan Wu^a, He Zhang^b, Kai Tao^c, Xi Xie^a and Jin Wu^a*

Yaoming Wei and Hao Wang contributed equally to this work.

^aState Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China

E-mail: wujin8@mail.sysu.edu.cn

^bNational Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering (SCUT), Ministry of Education, South China University of Technology, Guangzhou, 510641, China.

[°]Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China

Fig. S1 The photographs showing the DN hydrogel withstands (a) a series of tensile strains from 0% to 550%, (b) 45° bending strain, (c) 360° twisting strain and (d) 1400% tensile strain.

Fig. S2 The current change ΔI (a) and base current I_0 (b) of the CuSn-Ag sensor in response to 2 ppm NO₂ at the bias voltages of 0.5, 1.0 and 1.5 V.

Calculation of the limit of detection (LOD).

The calculation of LOD was executed by equations S1 and S2. The procedure was as follow:

- Execute the 5th order polynomial fit for the baseline of response versus time curve before exposure to NO₂ (Fig. S3).
- 2. Extract N = 11 data points (Y_i) from the baseline.
- 3. Calculate the noise according to equation S1.
- 4. Extract the sensitivity (slope) from the response versus the time curve (Figure 4c).
- 5. Calculate the LOD according to equation S2.

$$Noise = \sqrt{\frac{\Sigma(Y - Y_i)^2}{N - 1}}$$
(Equation S1)
$$LOD = \frac{3 \times Noise}{Slope}$$
(Equation S2)

Fig. S3 (a) and (b) The 5th order polynomial fitted results for the background responses of Ag-Ag and CuSn-Ag sensors, respectively, before exposure to NO₂.

Time(s)	Yi	Y	(Yi-Y) ²
0.59082	-1.21781	-1.14853	0.0048
10.7749	-1.12336	-1.21423	0.00826
20.35986	-1.26956	-1.26761	3.80E-06
30.54395	-1.29414	-1.31461	4.19E-04
40.729	-1.33393	-1.35222	3.34E-04
50.91309	-1.39506	-1.38211	1.68E-04
60.49805	-1.3789	-1.40537	7.01E-04
70.68213	-1.3197	-1.42758	0.01164
80.86621	-1.3679	-1.45	0.00674
90.45117	-1.41707	-1.47362	0.0032
100.63623	-1.62214	-1.50327	0.01413

 Table S1. 5th order polynomial fitting data for the Ag-Ag NO2 sensor.

Time(s)	Yi	Y	(Yi-Y) ²
0.58984	0.58415	0.56492	3.70E-04
10.77393	0.45332	0.5984	0.02105
20.95801	0.25835	0.55044	0.08532
30.54297	-1.07907	0.47352	2.41055
40.72705	0.17063	0.38716	0.04689
50.91211	0.2284	0.31236	0.00705
60.49707	0.23498	0.25763	5.13E-04
70.68115	0.14578	0.21377	0.00462
80.26611	0.14961	0.17914	8.72E-04
90.4502	1.68626	0.1398	2.39154
100.63379	-0.00948	0.08837	0.00957

 Table S2. 5th order polynomial fitting data for the CuSn-Ag NO₂ sensor.

Table S3. Calculated noises and LODs for the Ag-Ag and CuSn-Ag NO_2 sensors.

Sensor	Noise (%)	Sensitivity (%ppm ⁻¹)	LOD (ppb)
Ag-Ag	0.0701	31.18	6.8
CuSn-Ag	0.7354	60.02	36.8

P LOD Sensing Transpa t_{resp}/t_{rec} Sensitivity Temp. Deformability Ref. materials (ppm) rency **(s)** sulfonated rGO 44.3 %/ppm / RT No 3.6 No 1 ethylenediamine-15.9 %/ppm / RT 0.07 No No modified rGO 131.75@100 2 WO₃ nanoplates / 100 °C 5 No No ppm (R_g/R_a) 28.626 /ppm 3 Au-WO₃ 4/59 100 °C < 0.25 No No (R_g/R_a) 12@50 ppb 5.1min/ 4 rGO/ZnO 100 °C 0.005 No No 7.5min (R_g/R_a)

RT

0.07

0.0000

83

0.008

0.1

0.0028

< 0.25

0.084

0.0044

<5

0.0435

0.0068

No

No

bending

90° bending

150° bending

bending

180° bending

20% strain

40% strain

100% strain

1400% strain

5

6

7

8

9

10

11

12

13

14

This

work

No

Yes

chemically

functionalized

RGO

Au@Te

WSe₂ nanosheets

Pt-ZnO/porous

RGO

 SnO_2/RGO

PPy/N-MWCNT

PbS CQD

 MoS_2/RGO

 MoS_2

rGO/ZnO

PAM/Ca-alginate

hydrogel

2.3 %/ppm

28 /ppm

 (R_a/R_g)

1.55 /ppm

 (R_a/R_g)

43.28 %@5 p

pm

4.3 %/ppm

24.82 %@5 p

pm 41 %/ppm

 (R_a/R_g)

6 %@1 ppm

160 %@5 pp

m

3.349 %/ppm

60.02 %/ppm

284/363

11.3

 (t_{resp})

/

/

177/260

65/668

12/37

6min/12

min

/

140/630

79.7/

71.3

Table S4. Performance comparison of various NO ₂ sensing materials in terms of
sensitivity, response/recovery time, working temperature, LOD, deformability and
transparency.

The t_{resp} , t_{rec} , Temp., LOD, Ref. and RT mean the response time, recovery time, temperature, limit of detection, reference and room temperature, respectively.

Fig. S4a shows the microscopic morphology of Ag electrode before undergoing longtime (6 h) sensing test toward 2 ppm NO₂. EDS analysis indicates that the element composition was Ag. For cathodic Ag that had undergone sensing test (Fig. S4b), its morphology was similar with the pristine Ag but O element appeared on its surface, which was ascribed to the residual hydrogel. As shown in Fig. S4c, the surface of anodic Ag that had undergone long-term sensing test showed abundant cracks, revealing that the anode was oxidized and corroded. During all the EDS analyses, the C elements resulted from the conductive adhesive tape that was utilized to immobilize samples on the supporting SEM stage.

Fig. S4 SEM images (left) and corresponding EDS results (right) of anodic and cathodic electrodes of Ag-Ag sensor before and after the continuous detection of 2 ppm NO₂ for

6 h. (a) The pristine Ag before sensing test. (b) The cathodic Ag after sensing test. (c) The anodic Ag after sensing test.

Fig. S5a shows the microscopic morphology of CuSn electrode before undergoing the NO₂ sensing test. EDS analysis shows that the atomic ratio of Cu: Sn was about 2: 1. For cathodic Ag and anodic CuSn that had undergone long-term (6 h) sensing test (Fig. S5b-c), there were obvious residual hydrogel on the surfaces and O element was observed in anode and cathode. However, different from the anode of Ag-Ag sensor (Fig. S4c), no obvious crack was detected on the anodic CuSn, presenting its superior corrosion resistance of the CuSn-Ag sensor.

a	Pristine CuSn before test (CuSn-Ag)					_	
		Elements C		l	Sn		
	- distant	1	67.1	3	32.87	_	
	<u>40 µm</u>						
D	test (CuSn-Ag)	Elements	С	0) 4	Ag	
	10 µт	1	26.09	2.2	25 71	.66	
с	Anodic CuSn after test (CuSn-Ag)						
1.15		Elements	С	0	Cu	Sn	
		1	50.05	17.32	23.61	9.02	
-	30 µm						

Fig. S5. SEM images (left) and corresponding EDS results (right) of anodic and cathodic electrodes of CuSn-Ag sensor before and after gas sensing tests toward 2 ppm NO₂ for 6 h. (a) The pristine CuSn before NO₂ sensing test. (b) The cathodic Ag after NO₂ sensing test. (c) The anodic CuSn after NO₂ sensing test.

Fig. S6. Investigation of the selectivity of the CuSn-Ag hydrogel sensor toward NO₂. Time-dependent conductance change of the sensor in response to (a) 100 ppm O₂, (b) 10 ppm NH₃, (c) 2 ppm H₂S, (d) 200 ppm CO₂, (e) 40 ppm ethanol (repeated 4 cycles) and (f) 40 ppm acetone (repeated 4 cycles).

Fig. S7. Time-dependent conductance change of the sensor in response to 400 ppm NO_2 in the presence of 21% O_2 (air background) for repeated 4 experimental cycles.

Fig. S8. The LED lights were lightened by a direct current power source when DN hydrogel was connected in series in the circuit. The LED light kept on when various deformations were applied to the hydrogel, including (a) 0% strain, (b) 45° bending, (c) 180° twisting, (d) 50% tensile strain, and (e) 100% tensile strain, indicating the maintained conductance.

Fig. S9. Electromechanical response of the hydrogel sensor. (a-c) Dynamic curves showing the relative resistance changes of DN hydrogel upon loading and unloading a series of tensile strains from 5% to 600%. The strain sensing test was executed 10 times for each strain. (d) The linear fitted relative resistance changes versus strains, from which the gauge factors were deduced within different strain ranges.

Alarm demonstration system

The whole system consists of sensor, hardware system and software system. The hardware system is composed of voltage follower, signal conditioning circuit, power supply module, Bluetooth module, alarm module and Microprogrammed Control Unit (MCU), as shown in Fig. 7a-b. Among them, voltage follower circuit is used for stabilized output of Digital-to-Analog Converter (DAC), which ensures that the voltage at both ends of the sensor is constant. The signal output from the sensor was collected by the Analog to Digital Converter (ADC) of the MCU after passing through the signal conditioning circuit, and the data finally was sent to the user terminal via Bluetooth. Moreover, the alarm was triggered when the value collected by ADC was greater than the set value.

References

- 1. W. Yuan, A. Liu, L. Huang, C. Li and G. Shi, Adv. Mater., 2013, 25, 766-771.
- S. S. Shendage, V. L. Patil, S. A. Vanalakar, S. P. Patil, N. S. Harale, J. L. Bhosale, J. H. Kim and P. S. Patil, *Sens. Actuators, B*, 2017, 240, 426-433.
- S. Zhao, Y. Shen, P. Zhou, X. Zhong, C. Han, Q. Zhao and D. Wei, *Sens. Actuators, B*, 2019, 282, 917-926.
- J. Liu, S. Li, B. Zhang, Y. Xiao, Y. Gao, Q. Yang, Y. Wang and G. Lu, Sens. Actuators, B, 2017, 249, 715-724.
- J. Wu, Y. Wei, H. Ding, Z. Wu, X. Yang, Z. Li, W. Huang, X. Xie, K. Tao and X. Wang, ACS Appl. Mater. Interfaces, 2020, 12, 20623-20632.
- Z. Yuan, Q. Zhao, C. Xie, J. Liang, X. Duan, Z. Duan, S. Li, Y. Jiang and H. Tai, Sens. Actuators, B, 2022, 355, 131300.
- C. Yang, J. Xie, C. Lou, W. Zheng, X. Liu and J. Zhang, Sens. Actuators, B, 2021, 333, 129571.
- J.-Y. Kang, W.-T. Koo, J.-S. Jang, D.-H. Kim, Y. J. Jeong, R. Kim, J. Ahn, S.-J. Choi and I.-D. Kim, *Sens. Actuators, B*, 2021, **331**, 129371.
- J. Wu, Z. Wu, H. Ding, Y. Wei, W. Huang, X. Yang, Z. Li, L. Qiu and X. Wang, ACS Appl. Mater. Interfaces, 2020, 12, 2634-2643.
- B. Liu, X. Liu, Z. Yuan, Y. Jiang, Y. Su, J. Ma and H. Tai, *Sens. Actuators, B*, 2019, **295**, 86-92.
- H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu, D. Zhou, Z. Xia, E. H. Sargent and J. Tang, *Adv. Mater.*, 2014, 26, 2718-2724.
- 12. N. Yi, Z. Cheng, H. Li, L. Yang, J. Zhu, X. Zheng, Y. Chen, Z. Liu, H. Zhu and H. Cheng, *Mater. Today Phys.*, 2020, **15**, 100265.

- M. A. Islam, H. Li, S. Moon, S. S. Han, H.-S. Chung, J. Ma, C. Yoo, T.-J. Ko,
 K. H. Oh, Y. Jung and Y. Jung, *ACS Appl. Mater. Interfaces*, 2020, **12**, 53174-53183.
- W. Li, R. Chen, W. Qi, L. Cai, Y. Sun, M. Sun, C. Li, X. Yang, L. Xiang, D. Xie and T. Ren, ACS Sens., 2019, 4, 2809-2818.