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Supplementary Section 1

Supplementary Figures

Figure S1. The distribution of the dataset as an output parameter.



Figure S2. The learning curve of CNN-based neural network.



Figure S3. Prediction performance of the single task CNN models. (a) Distribution of predicted values 

for train/validation/test dataset. (b) R2 values of the CNN model applied in the validation and test 

dataset. 



Figure S4. The current density at 4V according to various trap densities in HTL1 and ETL2 calculated 

by the drift-diffusion simulation.



Figure S5. The device and molecular structures of red PhOLEDs.



Figure S6. The current density-voltage characteristics of the unipolar charge devices.



Figure S7. Electroluminescence spectra of red PhOLEDs. 



Figure S8. The modulus spectra of (a) device 1, (b) device 2, and (c) device 3.



Figure S9. Predicted and experimental charge carrier mobilities of the organic layers used in the 

devices. The structures of the hole only devices for HTL1/HTL2/EML were ITO/HTL1 (50 nm)/Al, 

ITO/HTL1 (50 nm)/HTL2 (50 nm)/Al, and ITO/HTL1 (20 nm)/HTL2 (5 nm)/EML (30 nm)/HTL1 (10 

nm)/Al. The structures of the electron only devices for ETL1/ETL2/EML were ITO/ETL1 (50 

nm)/LiF/Al, ITO/ETL2 (50 nm)/ETL1 (50 nm)/LiF/Al, and ITO/ETL2 (10 nm)/EML (30nm)/ETL2 

(5 nm)/ETL1 (30 nm)/LiF/Al.



Figure S10. Spatial charge and exciton distributions for various operating voltages in red PhOLEDs 

simulated by the drift-diffusion modeling with predicted and experimental eletrical properties.



Supplementary Tables

Table S1. The boundaries of the output parameters in the dataset.

　 Min. value Max. value Unit
HTL1 mobility 10-8 10-3 cm2 V-1s-1

HTL1 trap density 1014 1018 cm-3

HTL2 mobility 10-8 10-3 cm2 V-1s-1

EML hole mobility 10-10 10-5 cm2 V-1s-1

EML electron mobility 10-10 10-5 cm2 V-1s-1

EML recom. coeff. 10-16 10-11 cm3 s-1

ETL2 mobility 10-8 10-3 cm2 V-1s-1

ETL1 mobility 10-8 10-3 cm2 V-1s-1

ETL1 trap density 1014 1018 cm-3



Table S2. The performance of the CNN based model according to the number of filters and nodes in the neural network. Dropout and learning 

rates were 0.5 and 0.001.

# of filters 
in cov 
layer1

# of filters 
in cov 
layer2

# of filters 
in cov 
layer3

# of nodes 
in dense 

layer
R2 R2_μHTL1 R2_hEML R2_eEML R2_μETL1 MSE

5 5 5 50 0.424 0.856 0.354 0.330 0.617 0.053 
10 10 10 50 0.401 0.832 0.344 0.262 0.604 0.055 
20 20 20 50 0.505 0.830 0.454 0.451 0.720 0.048 
40 40 40 50 0.514 0.834 0.522 0.460 0.716 0.047 
60 60 60 50 0.523 0.847 0.502 0.484 0.724 0.047 
80 80 80 50 0.485 0.795 0.448 0.483 0.737 0.049 
60 60 60 20 0.421 0.713 0.400 0.372 0.637 0.054 
60 60 60 100 0.536 0.846 0.518 0.529 0.766 0.047 
60 60 60 200 0.534 0.878 0.511 0.552 0.788 0.048 



Table S3. The performance of the CNN based model according to the drop rate. 60 filters and 100 nodes were used in the convolutional layers 

and the dense layer. The learning rate was 0.001.

Drop rate R2 R2_μHTL1 R2_hEML R2_eEML R2_μETL1 MSE

0.3 0.536 0.846 0.518 0.529 0.766 0.047 
0.4 0.524 0.857 0.475 0.564 0.709 0.046 
0.5 0.536 0.825 0.526 0.520 0.743 0.046 
0.6 0.494 0.772 0.483 0.491 0.675 0.048 



Table S4. The performance of the CNN based model according to the layer structure of the neural network. 60 filters and 100 nodes were used 

in the convolutional layers and the dense layer. Dropout and learning rates were 0.5 and 0.001.

　Layer structure R2 R2_μHTL1 R2_hEML R2_eEML R2_μETL1 MSE

Conv / pooling 0.181 0.620 0.126 0.079 0.162 0.069 

Conv / pooling / Conv 0.417 0.818 0.340 0.370 0.582 0.054 

Conv / pooling / Conv / pooling / Conv 0.536 0.825 0.526 0.520 0.743 0.046 

Conv / pooling / Conv / Conv 0.526 0.828 0.524 0.507 0.719 0.046 



Table S5. The performance of the CNN based model according to the structure of the dense layer. 60 filters were used in the convolutional 

layers. Dropout and learning rates were 0.5 and 0.001.

Structure of dense layers R2 R2_μHTL1 R2_hEML R2_eEML R2_μETL1 MSE

100 0.536 0.825 0.526 0.520 0.743 0.046

100 / 100 0.511 0.849 0.488 0.440 0.718 0.047

100 / 100 / 100 0.432 0.849 0.331 0.337 0.700 0.054

100 / 50 / 50 0.513 0.840 0.492 0.502 0.711 0.047



Table S6. The performance of the CNN based model according to the learning rate. 60 filters and 100 nodes were used in the convolutional 

layers and the dense layer. Dropout rate was 0.5.

Learning rate R2 R2_μHTL1 R2_hEML R2_eEML R2_μETL1 MSE

0.002 0.465 0.805 0.413 0.350 0.696 0.050

0.001 0.536 0.825 0.526 0.520 0.743 0.046

0.0005 0.528 0.831 0.514 0.487 0.754 0.046

0.0001 0.516 0.855 0.462 0.490 0.713 0.047



Supplementary Section 2

Supplementary information of the drift-diffusion simulation

The charge transport in organic light-emitting diodes was described by the electric field-driven 

transport (drift current) and the differential concentration-driven transport (diffusion current) as 

following equations.[1–4]

𝜀0𝜀𝑟

𝑞
∂2𝜑(𝑥,𝑡)

∂𝑥2
= 𝑝(𝑥,𝑡) ‒ 𝑛(𝑥,𝑡) + 𝑁𝐷 + 𝑁𝐴 + ∑𝜌𝑡(𝑥,𝑡)
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, , , , , , , , , and  are the vacuum permittivity, dielectric permittivity, 𝜀0 𝜀𝑟 𝑞 𝜑(𝑥,𝑡) 𝑝(𝑥,𝑡) 𝑛(𝑥,𝑡) 𝑁𝐷 𝑁𝐴 𝜌𝑡 𝑅

electronic charge, electric potential, hole density, electron density, ionized donor density, ionized 

acceptor density, trap charge, and recombination rate, respectively. To mathematically realize the 

charge transport in the density of states in the organic semiconductors, the combination of mobility 

and trap distribution was adopted in the simulation. The number of the trapped holes with the trap 

density Nt(E) and trap distribution function ft was described by

.
𝜌𝑡(𝑥,𝑡) =  ∫(1 ‒ 𝑓𝑡(𝐸,𝑥,𝑡))𝑁𝑡(𝐸)𝑑𝐸

The trap distribution was assumed as an exponential distribution in the bandgap energetic region. The 

impedance in the small perturbation condition was derived by introducing time-dependent oscillation 

terms to the steady-state parameters as follows.[1,5–7]

𝑛(𝑥,𝑡) = 𝑛(𝑥) + 𝑛̃(𝑥)𝑒𝑖𝜔 𝑡

𝑝(𝑥,𝑡) = 𝑝(𝑥) + 𝑝̃(𝑥)𝑒𝑖𝜔 𝑡

𝜙(𝑥,𝑡) = 𝜙(𝑥) + 𝜙̃(𝑥)𝑒𝑖𝜔 𝑡



, , and  was assumed as a small amplitude in the perturbation function and  is the 𝑛̃(𝑥) 𝑝̃(𝑥) 𝜙̃(𝑥) 𝜔

angular frequency. The device structure of OLED is set to ITO / HTL1 (80 nm) / HTL2 (10 nm) / EML 

(30 nm) / ETL2 (5 nm) / ETL1 (30 nm) / Al. The injection barrier at the organic/metal electrodes 

interfaces was assumed to be 0.3 eV. The output physical values in the datasets, which were HTL1 

hole mobility, HTL1 trap density, HTL2 mobility, EML hole mobility, electron mobility, 

recombination coefficient, ETL2 mobility, ETL1 electron mobility, and ETL1 trap density, were 

normalized to have the values from 0 to 1 and utilized in the machine learning framework for enhancing 

the predictivity. The physical parameters were randomly generated in the log-scale to uniformly 

distribute the values in the log-scale dimension. For the modulus spectra, the normalization of the 

modulus intensity for each case was performed based on the maximum modulus value in whole 

datasets rather than the maximum value of each case because relative intensity in the modulus spectra 

was correlated with the capacitor components (charge storage or accumulation) in the charge 

dynamics. 

References

[1] J. Staudigel, M. Stößel, F. Steuber, J. Simmerer, J. Appl. Phys. 1999, 86, 3895–3910.

[2] B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, J. C. Scott, J. Appl. Phys. 2001, 89, 

4575–4586.

[3] J. -M. Kim, C. H. Lee, J. J. Kim, Appl. Phys. Lett. 2017, 111, 75307.

[4] C. H. Lee, J. H. Lee, K. H. Kim, J. J. Kim, Adv. Funct. Mater. 2018, 28, 1–8.

[5] N. D. Nguyen, M. Schmeits, Phys. Status Solidi A 2006, 203, 1901–1914.

[6] E. Knapp, B. Ruhstaller, Appl. Phys. Lett. 2011, 99, 37–40.

[7] E. Knapp, B. Ruhstaller, Opt. Quantum Electron. 2011, 42, 667–677.




