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Figure S1. Powder X-ray diffraction (PXRD) patterns of three MOFs (UiO-66, HKUST-

1, MIL-100(Fe)). Consistent with the XRD in the literature.[S1-S3] 
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Figure S2. 1H NMR spectroscopy of 1-cyanomethyl-3-methylimidazolium 

bis[(trifluoromethyl)sulfonyl]imide ([CMMIM]TFSI). 
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Figure S3. Nitrogen adsorption isotherms of UiO-66, and pore-size distributions (inset). 
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Figure S4. FT-IR spectra of UiO-66-ionogel under different temperature. 
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Figure S5. Storage modulus G', and loss modulus G'' of UiO-66-ionogel (IL: 90 wt%, UiO-

66: 0.5 wt%) on frequency sweep at 25 °C. 
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Figure S6. (a) Thermal decomposition curves of the PDMAA, UiO-66, and UiO-66-

ionogel from 30 °C to 800 °C. PDMAA, UiO-66, and UiO-66-ionogel exhibited Td (Td: 

the onset decomposition temperature corresponding to the temperature at which the percent 

weight loss is approximately 5%) at 364 °C, 93 °C, and 295 °C, respectively. (b) Long-

term durability of UiO-66-ionogel in N2 and air at 200 °C. The test was performed at a 

heating rate of 10 °C min-1 under flowing N2 and air, respectively. 
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Figure S7. (a) Zr 3d results of X-ray photoelectron spectroscopy (XPS) spectrum for UiO-

66 and UiO-66-polymer. The Zr of UiO-66 will be separated into two 3d3/2 (185.2 eV) and 

3d5/2 (182.7 eV) due to the electron spin. However, because the cyano group has a strong 

coordination effect, it will compete with the ligand on UiO-66 for coordination, so that part 

of the Zr is coordinated with the cyano group, and the XPS energy spectrum shows two 

sub oxide peaks 3d3/2 (187.7 eV) and 3d5/2 (180.8 eV). The results show that part of the Zr 

in UiO-66 is coordinated with the cyano group to form a new coordination bond. (b) XPS 

spectrum of UiO-66-polymer. 
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Figure S8. (a) Monotonic tensile photographs of notched ionogel containing 0.5 wt% 

chemical crosslinking agent (MBAA). (b) Comparison of tear resistance between UiO-66 

and chemical crosslinker (MBAA) (stretching rate: 50 mm min-1). 



S10 

 

 

Figure S9. Finite element simulations of the crack damage area inside (a)UiO-66-ionogel 

and (b) ionogel containing chemical crosslinking agent (MBAA). 
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Figure S10. (a) Photographs of UiO-66-ionogel being bent and twisted at 25 and −20 °C. 

(b) Images of completely severed specimens were obtained using an optical microscope 

at different self-healing time at -20 °C. (c) Monotonic variations in the tensile stress-

strain curves of UiO-66-ionogel after self-healing. 

 

Figure S11. Dynamic scanning calorimetry (DSC) curves of ionic liquid [CMMIM]TFSI, 

DMAA, and UiO-66-ionogel between -60 and 20 °C. The test was carried out at a scanning 

speed of 5 °C min-1 under N2 condition. 
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Figure S12. Conductivity of original and recycled UiO-66-ionogel (IL: 80 wt%, UiO-66: 

0.5 wt%) at different temperatures. The graph showed that the conductivity increased with 

increasing temperature. 

 

Figure S13. Signals of relative electrical resistance during finger bending. 
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Figure S14. (a) Tensile strength and elongation at the break of UiO-66-ionogels with 

different IL contents at a UiO-66 content of 1.0 wt %. (b) Tensile strength and elongation 

at the break of UiO-66-ionogels with different MOF contents at IL content of 80 wt %. 
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Figure S15. Tensile stress-strain curves of three MOFs (UiO-66, MIL-100(Fe), and 

HKUST-1) as crosslinking agents (IL:80 wt%, MOFs: 1.0 wt%). When UiO-66 was used 

as a crosslinking agent, the stress increase was the highest. The excellent mechanical 

properties confirm the applicability of the method. 
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Figure S16. (a) Monotonic tensile stress-strain curves, (b) toughness and Young's modulus, 

and (c) tensile strength and elongation at break of HKUST-1-ionogels at different IL 

contents with 1.0 wt % HKUST-1. 
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Figure S17. (a) Monotonic tensile stress-strain curves, (b) toughness and Young's modulus, 

and (c) tensile strength and elongation at break of HKUST-1-ionogels at different HKUST-

1 contents with 80 wt % IL. 
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Figure S18. (a) Tear resistance of 1.0 wt% HKUST-1-ionogels with different ionic liquid 

contents. (b) Calculated crack propagation strain and fracture energy. HKUST-1 also 

prevents crack diffusion effectively. 
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Figure S19. Cyclic stress-strain curves of HKUST-1-ionogels at (a) 500% and (b) 200% 

with 5 min intervals. The HKUST-1-ionogels were pre-stretched before the test. 
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Table S1. Comparison of the mechanical properties of the UiO-66-ionogels presented in  

this paper and representative gels in recent years. 

 

 

 
Stress 

(MPa) 

Strain 

(%) 

Young’s modulus 

(MPa) 

Fatigue threshold 

(kJ m-2) 

This work 7.6 11243 58 125 

Ref 16:Nat. Mater. 2022, 21, 

359 
12.6 None None None 

Ref 18:Nano Energy. 2021, 90, 

106645 
5 600 None None 

Ref 47:Adv. Mater. 2021, 33, 

e2105306 
0.72 2066 None None 

Ref 48:Adv. Funct. Mater. 2021, 31, 

2102773 
0.8 2580 0.102 2.35 

Ref 49:Adv. Mater. 2021, 33, 

2006111 
7 1640 0.9 None 

Ref 50:Adv. Funct. Mater. 2021, 31, 

2102386 
15.6 720 None None 

Ref 51:J. Mater. Chem. A 2022, 10, 

12005 
7.42 1011 0.08 None 

Ref 52:Nat. Commun. 2022, 13, 

2279 
1.7 30000 18 95.265 

Ref 53:Chem. Mater. 2021, 33, 8418 0.15 450 0.06 0.45 

Ref 54:Adv. Mater. 2015, 27, 6990 6 2000 None None 

Ref 55:Adv. Mater. 2018, 30, 

e1706846 
1.5 1200 0.98 12 

Ref 56:Soft Matter. 2014, 10, 7993 0.18 2800 0.7 0.18 

Ref 57:Mater. Horizons 2020, 7, 912 1.7 5000 0.484 4.7 

Ref 58:Soft Matter. 2014, 10, 7519 1.1 2000 6.37 30 

Ref 59: J. Polym. Sci. Pol. Phys. 

2015, 53, 1763 
0.7 1300 None 6.8 

Ref 60:Adv. Funct. Mater. 2015, 25, 

471-480 
1 100 5.6 5.5 

Ref 61:Adv. Mater. 2016, 28, 40 0.002 200 0.0184 0.0396 
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