Supporting Information for

Layer-Polarized Anomalous Hall Effect in Valleytronic van der Waals Bilayers

Ting Zhang,¹ Xilong Xu,¹ Baibiao Huang,¹ Ying Dai,^{1*} Liangzhi Kou,² Yandong Ma^{1*}

¹School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Str. 27, Jinan 250100, People's Republic of China

²School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Garden Point Campus, Brisbane, Queensland 4001, Australia

*Corresponding author: daiy60@sina.com (Y.D.); yandong.ma@sdu.edu.cn (Y.M.);

Table 1. Interlayer magnetic couplings, lattice constants (*a*), interlayer distances (*d*), ferroelectric polarizations, ferroelectric barriers and magnetocrystalline anisotropy energies (MAE) of bilayer VSi₂P₄, VSi₂N₄, FeCl₂, RuBr₂ and VClBr.

Bilayer	Interlayer Coupling	a (Å)	d (Å)	Ferroelectric Polarization (pC/m)	Ferroelectric Barrier (meV/f.u.)	MAE (meV/f.u.)
VSi ₂ P ₄	AFM	3.46	3.17	0.42	8.6	8.84×10^{-2}
VSi ₂ N ₄	AFM	2.87	3.01	1.93	5.2	-2.23 × 10 ⁻²
FeCl ₂	AFM	3.36	3.12	0.05	4.1	-1.90
RuBr ₂	AFM	3.68	3.08	0.21	7.9	-0.75
VClBr	AFM	3.30	3.12	0.13	6.4	-0.25

Fig. S1 (a) Crystal structures of single-layer VSi_2P_4 from and side views. (b) 2D Brillouin zone for single-layer VSi_2P_4 . (c) Enlarged low-energy band dispersions of single-layer VSi_2P_4 with SOC. The Fermi level is set to 0 eV.

Fig. S2 (a) Crystal structure and (b) enlarged low-energy band dispersions of AA-stacked bilayer VSi_2P_4 . The Fermi level is set to 0 eV.

Fig. S3 (a) Crystal structure and (b) enlarged low-energy band dispersions of the paraelectric state in bilayer VSi_2P_4 . The Fermi level is set to 0 eV.

Fig. S4 Phonon spectra of the paraelectric state of bilayer VSi_2P_4 .

Fig. S5 Crystal structures, enlarged low-energy band dispersions and Berry curvatures of (a,c,e) AB- and (b,d,f) BA-stacked bilayer VSi₂N₄. The Fermi level is set to 0 eV. The arrows in (a) and (b) indicate the directions of ferroelectric polarization.

Fig. S6 Crystal structures, enlarged low-energy band dispersions and Berry curvatures of (a,c,e) AB- and (b,d,f) BA-stacked bilayer FeCl₂. The Fermi level is set to 0 eV. The arrows in (a) and (b) indicate the directions of ferroelectric polarization.

Fig. S7 Crystal structures, enlarged low-energy band dispersions and Berry curvatures of (a,c,e) AB- and (b,d,f) BA-stacked bilayer RuBr₂. The Fermi level is set to 0 eV. The arrows in (a) and (b) indicate the directions of ferroelectric polarization.

Fig. S8 Crystal structures, enlarged low-energy band dispersions and Berry curvatures of (a,c,e) AB- and (b,d,f) BA-stacked bilayer VClBr. The Fermi level is set to 0 eV. The arrows in (a) and (b) indicate the directions of ferroelectric polarization.