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Fig. S1 (a) WLI images of the surface morphology of CS bands constructed by probes
with different diameters. (b) Typical section profiles of CS bands constructed by
probes with different diameters.
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Fig. S2 (a) WLI images of the surface morphology of CS bands constructed by probes
with different relative immerse depths. (b) Typical section profiles of CS bands
constructed by probes with different relative immerse depths.
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Fig. S3 (a) SEM images of the surface morphology of GOF films with biaxial aligned
CS bands. (b) Stress-strain curves of GOF films with biaxial aligned CS bands.

4/20



[\

90
120 60

120 60

150 3

| o

180 0

Fig. S4 (a-c) Dark field optical image (a), WLI image (b) and orientation distribution
(c) of the surface wrinkles for GF. (d-f) Dark field optical image (d), WLI image (¢)

and orientation distribution (f) of the surface wrinkles for G200. (Scale bars: a, d 100

pm)
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Fig. S5 (a) SEM images of GO sheets. (b) Statistics of lateral size distribution of GO

sheets.
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Fig. S6 SEM images of the surface wrinkles for GF (a) and G200 (b). (Scale bars: a, b
100 um)
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Fig. S7 (a) WLI images of the surface wrinkle of GFs with different d. (b) Their

corresponding FFT spectra.
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2 Fig. S8 Uniaxial tensile stress-strain curves for GF, G200, G100, G50, G20 and G10

3 films.
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Fig. S9 Schematic diagram of the calculation process of cross-sectional areas (4) for

GOF with aligned ridges.

10/20



2 Fig. S10 (a) SEM images of the section morphology of CS bands after prolonged
3 stretching. (b, ¢) POM and WLI images of the surface morphology of CS bands after

4 prolonged stretching.
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Fig. S11 (a) Stress-strain curves of G20 films made of GO sheets with different lateral
sizes. (b, ¢) POM images of the surface morphology of G20 films made of GO sheets
with lateral sizes of (b) 10 um and (c) 100 pm. (d, e) WLI images of the surface
morphology of G20 films made of GO sheets with lateral sizes of (d) 10 pm and (e)
100 pm.
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1
2 Fig. S12 Tensile stress-strain curves of GF and G20 films during 1000 tensile loading-

3 unloading cycles.
4
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Fig. S13 Images taken by high-speed camera to track the fracture process of G20 (a)

and GF (b) films.
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Fig. S14 Optical images of GFs with CS bands aligned in (a) jagged, (b) wavy, and (¢)

step-like manner and their corresponding fracture surface.
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1
2 Fig. S15 SEM images of fracture surface of GFs with CS bands aligned in (a) jagged,

3 (b) wavy, and (c¢) step-like manner.
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Fig. S16 The Raman shift of G peak in CS bands (top, orange) and plain area (bottom,

4 blue) for G20 films under different tensile strains.
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Fig. S17 Grain size effect of LMs and CS bands enhancement effect. From the

perspective of composite, the mixture strength is expressed: Gy =0y f; +0g, fu >
where f, is the CS bands volume fraction, f,, is the membrane volume fraction,

O 1s the fracture strength of the CS bands, and oy,, is the fracture strength of the

membrane. Even we assume the strength of CS bands is 3 times of the membrane
strength (we think the ridge strength is only comparable to the membrane strength due
to the similar constituent and structure), the predicted fracture strength is still much

smaller than the experiments.
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Fig. S18 Comparison of FEM results with experimental stress-strain curves for

different GFs.
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1 Table S1 The mechanical property data of our ridged GFs and other GO based films.
2

Sample Strength Toughness Reference
(MPa) MJ m?)
Nacre 200 2.6 Nat. Mater. 2015, 14, 23
GO-PVA 80.2 0.1 Adv. Funct. Mater. 2010, 20, 3322
GO-PMMA 148.3 2.35 Adv. Funct. Mater. 2010, 20, 3322
GO-AL,O5-PVA 143 9.2 ACS Appl. Mater. Interfaces 2015, 7, 9281
GO-SA 240 1.3 Nano Res. 2016, 9, 735
GO-Ca? 125.8 0.31 ACS Nano, 2008, 2, 572
GO-Mg?* 80.6 0.13 ACS Nano, 2008, 2, 572
GO-AP* 100.5 0.23 Nat. Chem. 2015, 7, 166
GO-Zn?* 142.2 0.32 Chem. Commun. 2015, 51, 2671
GO-GA 101 0.3 ACS Nano, 2011, 5, 2134
GO-borate 185 0.14 Adv. Mater. 2011, 23, 3842
GO-PEI 209.9 0.23 Adv. Mater. 2013, 25, 2980
GO-PCDO 129.6 3.91 Angew. Chem., Int. Ed., 2013, 52, 3750
GO-PAA 91.9 0.21 J. Phys. Chem. C, 2009, 113, 15801
GO-PDA 266 4.92 Adv. Funct. Mater. 2017, 27, 1605636
GO-CNC 490 3.9 Adv. Mater. 2016, 28, 1501
GO-annealing 211 391 Adv. Mater. 2014, 26, 7588
GF 133 2.35 This work
G20 348 6.64 This work
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