Electronic Supplementary Information (ESI) for:

Frequency-dependent stimulated and post-stimulated voltage control of magnetism in

transition metal nitrides: towards brain-inspired magneto-ionics

Zhengwei Tan^a, Julius de Rojas^a, Sofia Martins^a, Aitor Lopeandia^{a,b}, Alberto Quintana^c, Matteo Cialone^d, Javier Herrero-Martín^e, Johan Meersschaut^f, André Vantomme^g, José L. Costa-Krämer^h, Jordi Sort^{a,i*} and Enric Menéndez^{a*}

^aDepartament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.

^bCatalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Cerdanyola del Vallès, E-08193 Barcelona, Spain.

^cInstitut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, E-08193 Barcelona, Spain.

^dCNR-SPIN Genova, Corso F. M. Perrone 24, 16152 Genova, Italy.

^eALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain.

^fIMEC, Kapeldreef 75, B-3001 Leuven, Belgium.

^gQuantum Solid State Physics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium.

^hIMN-Instituto de Micro y Nanotecnología (CNM-CSIC), Isaac Newton 8, PTM, 28760 Tres Cantos, Madrid, Spain.

ⁱInstitució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, E-08010 Barcelona, Spain.

*Correspondence to: jordi.sort@uab.cat (J. Sort), enric.menendez@uab.cat (E. Menéndez)

Compositional and structural characterization

High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and electron energy loss spectroscopy (EELS) were performed along the cross-sections of asprepared 200 nm-thick CoN films and a 200 nm-thick CoN film electrolyte-gated at -25 V for 10 min. As shown in Fig. S1a and b, the as-prepared 200 nm-thick CoN films show a highly nanostructured morphology with homogeneous composition. As shown in Fig. S1b, upon gating at -25 V for 10 min, a well-defined interface between a N-free and highly porous Co top layer and the rest of unaltered CoN film can be observed both in the HAADF-STEM image and the EELS mappings, evidencing the existence of a planar N migration front in agreement with previous results¹¹. As seen in Fig. S2, the $\theta/2\theta$ X-ray diffraction (XRD) pattern of an as-prepared 200 nm-thick CoN film reveals the presence of the (111) peak of CoN, indicating the growth of a textured phase. Upon subjecting a 200 nm-thick CoN film at -25 V for 15 min, the intensity of the (111) peak of CoN significantly decreases, in agreement with the denitriding caused but the transport of N ions towards the electrolyte.

Fig. S1. Compositional characterization by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and electron energy loss spectroscopy (EELS), and structural characterization by transmission electron microscopy (TEM). (a) TEM image of an as-prepared 200 nm-thick CoN film together with the HAADF-STEM image and corresponding Co and N EELS mappings of the area marked with a rectangle. (b) TEM image of a 200 nm-thick CoN film subjected to a -25 V for 600 s together with the HAADF-STEM image and corresponding Co and N EELS corresponding Co and N EELS mappings of the area marked with a rectangle.

Fig. S2. Structural characterization by X-ray diffraction (XRD). $\theta/2\theta$ XRD diffraction patterns of an as-prepared 200 nm-thick CoN film and a 200 nm-thick CoN film after being treated at – 25V for 15 min. For phase identification, the cards no. ICDD JCPDF 00-001-1241 and ICDD JCPDF 00-016-0116, were used for Cu and CoN, respectively.

Fig. S3. Compositional characterization by X-ray absorption spectroscopy. Co L_{2,3}-edge X-ray absorption spectroscopy measurements of the 5 nm- and 25 nm-thick CoN films.

Magneto-ionic characterization

Fig. S4 shows the hysteresis loops of CoN films with thickness ranging from 5 to 200 nm, sequentially recorded while electrolyte-gated at -25 V until reaching a stable state. The as-prepared CoN-based heterostructures exhibit some traces of ferromagnetic signal (< 10 emu cm⁻³), which could be ascribed to local deviations of CoN stoichiometry at the Cu-CoN interface.

Fig. S4. Consecutive in-plane VSM hysteresis loops (each lasting 30 min) of the as-prepared film (black) and the films biased under -25 V: **a**, 5 nm, **b**, 25 nm, **c**, 50 nm, **d**, 100 nm, and **e**, 200 nm CoN films.

Fig. S5. Zoom of Fig. 1c in initial stages to highlight the generation of magnetization. Saturation magnetization (M_s) as a function of time *t* from 0 to 6 s for a CoN films with thickness ranging from 5 to 200 nm under electrolyte-gating at -25 V while applying an external in-plane magnetic field of 10 kOe.

Table S1. Thickness-dependent magnetic and magnetoelectric parameters obtained from the consecutive hysteresis loops presented in Fig. S4 and $M_{\rm S}$ vs. t plots of Fig. S5.

Thickness (nm)	$\Delta M (H = 10 \text{ kOe})$ (emu cm ⁻³) upon -25 V for 1 s	$\Delta M (H = 10 \text{ kOe}) \qquad \Delta M (H = 10 \text{ kOe})$		$H_{ m C}$
		$(10^3 \text{emu cm}^{-3})$	$(10^3 \text{emu cm}^{-3})$	(Oe)
		upon -25 V for 50 s	upon saturation	
			[minimum time required to reach a stable <i>M</i> _S]	
5	2.6	0.235	0.297 [60 s]	35
25	1.5	0.132	0.305 [130 s]	132
50	0.3	0.068	0.379 [< 1 h]	132
100	0.1	0.040	0.423 [< 1 h]	143
200	0.1	0.037	0.507 [12 h]	179

Table S2. M_s attained once magneto-ionic process saturates (*i.e.*, maximum value), normalized by the time required to reach it (Δt) and by the absolute value of the applied voltage ($|\Delta V|$), from the current results and previous related works from the literature^{3,11-14,17}

Film	85 nm-	85 nm-	85 nm-	5 nm-thick	30 nm-thick	5 nm-thick
	thick Co ₃ O ₄ film	thick CoN film	thick FeN film	Co ₃ O ₄ film	CoMnN film	CoN film (current work)
$\frac{M_{\rm S}/(\Delta t \Delta V)}{(\rm emu\ cm^{-3}\ h^{-1}}$ $V^{-1})$	7.8	52.0	7.2	32.0	64.5	432.0

Fig. S6. In-plane vibrating sample magnetometry hysteresis loops (each lasting 30 min) of an as-prepared 200 nm CoN thin film and a 200 nm CoN film subjected to pulsed DC voltage

actuation for 0.5 and 1h at a frequency of (a) 1 Hz, (b) 10 Hz and (c) 100 Hz. Note that t_{delay} refers to the time after the voltage has been switched off.

Fig. S7. Time evolution of the saturation magnetization ($M_{\rm S} vs. t$) during and after DC voltage actuation at -25V for 20 nm and 50 nm thick CoN films. Dashed lines mark the start of magnetization turning point.