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Mechanism of enhanced Flexoelectricity in FEEF
A 3D elastomeric network with immobilized NPs can be simplified as a 2D neighboring 
network structure (Figure S1A). Electric polarization defines the accumulation of 
separated charges at the interfaces between a dielectric and two electrodes. As shown 
in Figure S1B(I), in the crosslinked polymer networks, the centers of positive and 
negative charges coincide initially when there is no asymmetric deformation. When a 
cubic network of elastomer is subjected to a bending motion, a curvature k occurs on 
horizonal direction, each bended network generates electric dipole moment p = qd, 
where q and d are the equivalent electric charges per network and the separating 
distance between positive and negative charges due to bending, respectively. Therefore, 
the flexoelectric polarization P is the total electric dipole moments per unit volume, 
which can be described as 

                                (S1)0 ,
p

P k
V

 

where V and μ0 are the total volume of the unit cell and initial flexoelectric coefficient 
of the elastomer. As the relationship between flexoelectric coefficient μ and uniaxial 
pre-stretch λ is μ ~ λ2[1,2]. When the biaxial pre-stretch is applied on the elastomer, the 
flexoelectric coefficient can be enhanced as

                                  (S2)2 2
0 ~ ,x y  

where λx and λy are the biaxial pre-stretch ratios along x and y direction, respectively.

When NPs are introduced into elastomer matrices, the cubic unit cells immobilized with 
NPs are enlarged with longer chains (Figure S1B(II)). The enlarged meshes generate 
initial strain gradient k0 with neighboring meshes, each of which leads to an initial 
dipole moment of qd0, where d0 is the initial distance of positive and negative charges. 
If the NP is electrically charged (Figure S1B(III)), the initial dipole moment will be 

                             (S3) 0 0 ,ep q q d 

where qe is the increment of equivalent electric charge in a polymer network by charged 
NP. Before bending, the initial dipole moments cancel each other out. When subjecting 
a curvature k to the structure, it can be assumed that a dipole moment of p is applied on 
each of the neighboring meshes. The total polarization can be calculated as
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Where w and a are the weight ratio of the filled NPs and the length of the polymer chain 
in unit cell, respectively. Therefore, the effective flexoelectric coefficient μ1 can be 
described as 
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Since a ~ 10-9 m, ak ~ 0, then sin ak ≈ ak. Eq. (S5) can be simplified as

                        (S6)1 0 0~ [4 (1 ) 2 1] .eqwak w
q

   

Considering the effect of biaxial pre-stretch, the flexoelectric effect of FEEF can be 
described as 

                   (S7) 2 2
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x y
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Figure S1. (A) 3D and 2D schemes of elastomer matrices with immobilized NPs. (B) 

Electromechanical analysis for (I) pure elastomer, (II) elastomer with immobilized NPs, (III) 

elastomer with electrically charged NPs under initial, bending and pre-stretch conditions.
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Strain gradient in transverse flexoelectricity 
There are two traditional setups to study transverse flexoelectricity (Figure S2). When 
a beam is bent in three-point-bending motion, the average strain gradient along 
thickness direction z can be derived from normal equations as[3]  

                         (S8)
3
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where z0 is the displacement at the middle of the beam, L is the length of the beam 
between two supporting bars, and x1 is the distance to the middle of the beam (Figure 
S2(A)). When a membrane with fixed lateral boundary is bent by applying point load 
in the center, according to theories of plates and shells[4], the differential equation of 
bending a circular plate can be written as 

                           (S9) 2 2 ,r rD w q r    ，

where D, w, q, r and θ are the bending rigidity, deflection, load distribution, radius 
direction and peripheral direction of cylinder coordinate system. And 
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with Poisson’s ratio ν. In the case of axial symmetry, Eq. (S9) can be written as 
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And the bending moment along radius and peripheral direction (Mr and Mθ) can be 
calculated as 
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Considering the boundary conditions of this case, 
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where P is the applied force in the center of the circular plate and a is the radius of the 
plate. The deflection of the plate can be expressed as

                       (S14)2 2 22 ln .
16
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The largest deflection w0, which obviously occurs in the center of the plate (r = 0), is 
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Then Eq. (S12) can be simplified as
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Normal stress σr and σθ can be calculated as
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Then normal strain εr and εθ are 

                      (S18)
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Since the circular plate is axial symmetry, the strain along peripheral direction is 
neglected. Then we have transverse strain gradient as
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In this case, we calculated the average strain gradient as 
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Figure. S2. Setups for the study of transverse flexoelectricity: bending motion of (A) beam with 

three-point supporting and (B) membrane with fixed lateral boundary.

Finite element Analysis (FEA) by ANSYS Workbench is carried out to verified the 
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strain gradient distribution. For circular membrane, the detail setup is listed in Table 
S1. Static analysis is considered as the experimental frequency is below 10 Hz. 
Concentrated load in the center of the membrane is controlled by the displacement at 
the center of the membrane, which is 0.1 mm in this FEA simulation. The elastic 
modulus and Poisson’s ratio are set as 2.0 MPa and 0.49. Strain distribution on bottom 
and upper layers of circular membrane are shown in Fig. S3(A), revealing the opposite 
sign of strain gradient along radius direction. In order to avoid the impact by stress 
concentration in the center and neutralization of strain gradient with opposite sign, the 
flexoelectric measurements is optimized by setting electrode on specific areas. Fig. 3(B) 
shows the strain gradient comparison between FEA result and theoretical calculation. 
The average strain gradient by FEA and theory are -0.66 and -0.63 respectively in the 
region of 10 mm < r < 18 mm. With an acceptable error of 4.55 %, electrodes are 
determined in the region of 10 mm < r < 18 mm as shown in Fig. S3(B). For three-point 
bending beam, we just use Eq. (S8) to calculate the strain gradient, since it’s a regular 
method to study transverse flexoelectricity[3,5,6].

Table S1. FEA setup for bending a circular membrane

Geometry Radius/mm Thickness/mm Constraint Load Material

Circular 
membrane

20 0.6
Fixed 
lateral 

constraint 

Concentrated 
load in the 

center
PDMS

Figure. S3 (A) Strain distribution of upper and bottom layers through FEA simulation along radius 

direction for circular membrane. (B) Strain gradient comparison between FEA and theoretical 

calculation.

Material preparation
Polydimethylsiloxane (PDMS) is used as a typical elastomer in this work. The 
experimental samples are made by commercial SYLGARD 184 silicone elastomer[7]. 
PDMS precursor are mixed at certain weight ratios of SYLGARD 184 base and curing 
agent, while corresponding mesh sizes are calculated (Table S2)[1]. NPs are mixed into 
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ethanol. Then we put PDMS precursor together with NP-ethanol liquid. The mixture is 
stirred and poured into an aluminum mould. After heating at 60 ℃ for 24 hours, the 
PDMS-NP composite is solidified. For electric poling, we borrow the aluminum mould 
as negative electrode and cover another metal plate as positive electrode on the upper 
surface of the sample. A heat plate (MS7-H550-Pro, DLAB) under the aluminum mould 
is used to keep a constant elevated temperature during poling process. In the thermal 
poling process, the sample is heated from room temperature to 150 ℃. After 
maintaining 150 ℃ for 20 minutes, the heat plate is switched off and cools down until 
room temperature. During the whole process, the sample is applied with an electric field 
by a high voltage source. After poling, the sample is cut into designed shape for further 
biaxial pre-stretch and flexoelectric measurement. Stretchable carbon conductive 
grease (#846-80G, MG Chemicals) is adopted as electrode, which are coated in certain 
area defined by Figure. S3(B).

Table S2

Curing ratio 10:1 12:1 15:1 18:1 20:1
Measured modulus (MPa) 2.804 2.162 1.896 1.601 1.007
Calculated Mesh size (nm) 1.64 1.79 1.87 1.98 2.30

 
Figure. S4. Material preparation procedure.

Experiment measurement for transverse flexoelectricity
The experimental setup of bending a circular FEEF membrane is shown in Figure S4a. 
Sinusoidal loads with a frequency of 1 Hz were applied on the samples to generate a 
displacement load using a material load machine MTS-858. The induced flexoelectric 
electric polarizations were detected by a charge amplifier B&K2692A by connecting 
both wires to the electrodes on both surfaces of the membrane. Displacement load and 
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voltage signals were displayed in real time and recorded by a Tektronix MDO3104 
oscilloscope. Pure PDMS, PDMS-NP composite and poled PDMS-NP composite are 
prepared in the experiments. All three types of samples are tested with different biaxial 
pre-stretch ratios. Five incremental displacement loads are set, while strain gradients 
are calculated according to Eq. (S20) (Table S3). With the measured electric charges 
divided by the area of electrode, polarization is obtained. According to Eq. (1), 
Flexoelectric coefficients are calculated and listed in Table S4 partially.

Table S3

Displacement (mm) 0.1 0.2 0.3 0.4 0.5
Strain gradient (m-1) 0.63 1.26 1.89 2.52 3.05

Table S4

Biaxial pre-stretch
μflexo (nC/m)

1.0×1.0 1.1×1.1 1.2×1.2 1.3×1.3 1.4×1.4
Pure PDMS 0.086 0.12 0.23 0.45 0.64
PDMS-NP 0.333 1.04 1.75 2.35 3.72

Poled PDMS-NP 1.01 2.24 4.75 5.67 7.46

Three-point-bending experiment validation
We also perform three-point beam bending experiment to verify the proposed three-
dimensional (3D) membrane bending approach (Figure S2(A), S5(B)). With a similar 
experimental method, we measured the flexoelectric coefficients of pure PDMS under 
biaxial pre-stretch (Table S5). The results of three point bending method are 
comparable to 3D membrane bending. The discrepancy is mainly due to the nonuniform 
strain gradient distribution.

Table S5

λy
　μflexo (nC/m)

1.0 1.1 1.2 

1.0 0.126 0.174 0.249 

1.1 0.178 0.240 0.210 λx

1.2 0.180 0.274 0.326 
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Figure. S5 Experimental setups. (A) Bending a circular membrane under pre-stretch, (B) Three-

point beam bending under pre-stretch.

Nano particle Selection

Figure. S6 NP selection. Flexoelectric coefficients of biaxial pre-stretched SYLGARD 184-NP 

composite with different type of NPs. It is seen from (G) that silica, Al2O3, and Fe3O4 NP fillings 

could extensively enlarge the flexoelectric coefficients.

Mechanical design of FEEF
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Figure. S7 Mechanical properties of FEEF. (A) Strain gradient distribution of poking a circular 

film through FEA. (B) Equivalent stiffness of a circular film in bending motion regarding to 

thickness t. (C) Force-deformation relationship in poking a circular film. (D) Electro-mechanical 

performance, (E) measured load with respect to deformation under multiple poking actuators (N = 

37). (F) Electro-mechanical response with respect to pre-stretch bias.

Size characterization of silica NPs 

Figure S8 TEM measurement procedures. The actual sizes of silica NPs are experimentally 

measured by Transmission Electron Microscope (Talos L120C TEM, Thermo Fisher 

Scientific).The silica NPs are mixed with ethyl alcohol (2 mg/mL). The mixture is stirred by 

ultrasonic mixer for 2 hours to separate the NPs. Then the mixed liquid is dripped onto a carbon 

film. After 12 hours until the ethyl alcohol volatilizes thoroughly, the carbon film with silica NPs 

is ready to use in the TEM.
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Figure S9 TEM images with numbers of displayed spherical silica NPs with scale bar of 50 nm 

and 100 nm, (A) 6 NPs, (B) 6 NPs, (C) 10 NPs and (D) 13 NPs.

 
Figure S10 Statistical size distribution silica NPs. The total number of silica NPs is 35 counted in 

Figure S9. The actual diameters of these spherical silica NPs are distributed within 6 nm to 20 nm, 
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and the average diameter is calculated as 12.9 nm.

Mechanical properties of the film with respect to silica weight ratios

we have investigated the mechanical properties of the composite with different weight 
ratio (from w = 0.0 % to 0.7 %) at uniaxial tension (Figure S11A). With w < 0.4 %, the 
tensile stress of the composite keeps constant, while the tensile stress increases when w 
> 0.4 % (Figure S11B). The maximum stretching ratio of the composite before fracture 
with respect to silica weight ratio is shown in Figure S11C. When w < 0.4 %, the 
maximum stretching ratio of the composite remains stable with average value of 2.4. 
When w > 0.4 %, the maximum stretching ratio of the composite decreases with respect 
to silica weight ratio. Experiments show that the PDMS-NP composite with silica 
weight ratio more than 0.4 % becomes stiffer and the stretchability decreases, which 
means it needs more mechanical load to deform and has smaller deformability.   

Figure S11 Mechanical properties of PDMS-NP composite. (A) Stress-stretch curves under 

uniaxial tension. (B) The tensile stress of the composite with silica NPs weight ratio from 0.0% to 

0.4 % keeps at a level of around 0.4 MPa, while when the silica weight ratio more than 0.4%, the 

tensile stress of the composite increase rapidly. (C) Maximum stretching ratio of the composite 

with silica weight ratio less than 0.4 % is around 2.4, while when the silica weight ratio more than 

0.4 %, maximum stretching ratio drops with respect silica weight ratio.  

Electrical charging of the film

We have explained the effect of the electric charging by characterizing the surface 
charge density of the film by two different ways.
a) By surface potential
The electrical charging procedure has key impact on the electromechanical property of 
the composite. Upon charging, net charges are trapped by the material. The net charge 
level can be reflected by the surface charge density Ds of the material. We have 
measured the surface charge density Ds of the composite with different silica weight 
ratios after electrical charging. The un-charged and charged Ds are experimented by an 
indirect way of measuring the surface potential Vs. Then the surface charge density Ds 
can be predicted by the following equation (Appl. Phys. Lett. 1975, 26(12), 675-677):
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where εr and t represent the permittivity and thickness of the composite, respectively. 
The relative permittivity of the composite with different silica weight ratio is indirectly 
obtained by measuring the capacitance C, and calculated by

,                            (S22)
0

r
Ct
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where A is the area of the measuring surface. The capacitance is measured by an LCR 
meter ( HIOKI, IM 3533-01). The surface potential is measured by an electrostatic 
meter (Trek MODEL P0865). Then we have the surface charge density Ds with respect 
to silica weight ratios w as shown in Figure 2D(iii) in the revised manuscript. Similar 
experiment results can be found in previous work (NANO LETT. 2020, 20, 4580-487). 
Results show that Ds increases with the amount of silica when w ≤ 0.2 %. When w > 
0.2 %, Ds stays steady. The observed “plateau charge density” is understood as follows. 

The electrical breakdown strength of PDMS is much larger than that of air. 
Consequently, when the composite is electrically charged and the top electrode is then 
removed, the surface charge density of the composite is thus limited by the breakdown 
of air. Given the electric breakdown strength of air, EB ~ 106 V m-1 and the permittivity, 
ε ~ 10-11 F m-1, the upper limit of the surface charge density of the composite, q ~ εEB 
~ 10-5 C m-2. This order of magnitude is consistent with the experimentally observed 
upper bound. Therefore, the composite with silica weight ratio of 0.2 % have already 
reach a high level of surface charge density after electrical charging. Larger amount of 
silica NPs has little impact on enhancing the electromechanical property of the 
composite.

b) By comparing displacement of the film in electric field
In Figure 2D(ii), the film with surface charge density in an electric field will be bent by 
the force of electric field. When subjected to an electric field by applying opposite 
voltages on both electrodes, the boundary condition of the film with negative surface 
charge density Ds can be simplified as a cantilever beam with uniformly distributed 
load p. The relationship between p and applied voltage V can be described as

,                            (S23)
 

sD bVp
h t




where h/2 is the distance between the electrode and the film, t and b are the thickness 
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and width of the film. The maximum displacement of the cantilever vmax at the free end 
is

                      (S24)
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where L and E are the length and elastic modulus of the beam, I = bt3/12 is the bending 
stiffness of the beam, respectively. The vmax in Figure 2D(ii) is measured as 8 mm for 
the charged film and 2.5 mm for the non-charged film. The other parameters are listed 
as : t = 0.6 mm, h = 30 mm, b = 15 mm, l = 55 mm, E = 2.8 MPa and V = 600 V. 
According to Eq. (S24), the surface charge density can be calculated as 17.6 μC/m2 for 
the charge film and 5.5 μC/m2 for the non-charged film. The surface charge density of 
the charged and non-charged film is in good agreement with the results in Figure 
2D(iii). The deviation is mainly from the inaccurate measurement and the simplification 
of the cantilever beam model.

Figure S12 Theoretical model of charged film in an electric field.
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