Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2022

Microbial Electrosynthesis: Carbonaceous Electrode Materials for CO₂ Conversion

Supporting Information

Table S1. A Comparison on the key features of various technologies for CO₂ conversion

CO ₂ conversion	Thermocatalysis	Photoelectrochemical	Photocatalysis	Electrocatalysis	MES
methods					
Main products	MeOH, CH ₄ , C ₂₊	Formate, HCHO,	MeOH, CH ₄	C ₂₊ products	Organic acids, alcohols,
	products	НСООН, CH₄, CH₃OH,			fatty acids, lipids, etc.
		CH ₃ CH ₂ OH			
Advantages	Large output of	Product selectivity can	Simple reactor	An effective method of	Unaffected by system
	products.	be controlled.	designs.	storing electrical	fluctuations.
				energy.	
	Tandem routes	The utilization of	Utilization of		Higher conversion
	for value-added	renewable solar	sunlight.	Operating at room	efficiency.
	products.	energy.		temperature and	
			Operating at room	pressure.	Capable of self-healing.
	Appropriate to	Operating at room	temperature and		
	use at the	temperature and	pressure.		Operating at room
	industrial level.	pressure.			temperature and pressure.
					Good product selectivity.

Challenges	The	Lack of stability.	Low energy	Requires high	Requires high
	consumption of		efficiency.	overpotential.	overpotential for long-
	excessive				chain products.
	energy.	Low yield and	Poor product	More complex reaction	
		selectivity.	selectivity and	pathways.	Rising costs are
	Poor		stability.		experienced because of
	product			The liquid electrolyte	the high energy required
	selectivity.			has a low CO_2	to activate the bacterial
				solubility, which	pathway for autotrophic
	The chances of			reduces the current	development
	coke formation			density.	
	are higher.				Needs a particular growing
				Poor yield and product	medium.
	High			selectivity.	
	temperature				Membrane biofouling is
	and/or pressure				susceptible.
	operations are				
	required.				

Electrode Material	Surface area	Microbe/Medium	Biofilm thickness	Faradaic /Coulombic Efficiency (%)	Current Density	Over potential required for the product yield	Product Yield	Reference
CNT-MXene	8.66 m ² g ⁻¹	Mixed microbial consortium		7	– 324 mA m ⁻²	-800 mV (vs. Ag/AgCl)	Butyrate (780 mg/L)	Tahil et al., 2022 ¹
Graphene-CNTs	344.17 m ² g ⁻¹	Clostridium Ijungdahlii (DSM13528)		83 ± 11	595 ± 77 mA m ⁻²	-600 mV vs. SHE	Acetate (278 ± 44 mM m ⁻² d ⁻¹)	Han et al., 2019 2
CF/rGO-Magnetite	0.824 cm ⁻²	Rhodopseudomonas palustris TIE-1		9.05 ±0.2	-11.7± 0.1 μA cm ⁻²	-1.212 V vs. SHE	Polyhydroxybutyrate (91.31 ± 0.9 mg l ⁻¹)	Rengasamy et al., 2020 ³
Graphite and Carbon cloth	49.5 cm ²	Sporomusa ovata		80	-20 A m ⁻²	-0.9 V vs Ag/AgCl	Acetate (~11 g/L)	Bajracharya et al., 2022 ⁴
Co-Pi/GF		Rhodobacter sphaeroides 2.4.1		58.3		-1.0 to +1.0 V (vs. Ag/AgCl)	Malate (1.7 \pm 0.2 mg L ⁻¹) Succinate (5.7 \pm 0.1 mg L ⁻¹) Total carotenoids (1.7 \pm 0.1 mg L ⁻¹)	Fitriana et al., 2022 ⁵
Activated carbon fiber- supported g-C ₃ N ₄ - NiCoWO ₄	65 m²/g	Escherichia coli		56.6	640 mA/m² (light) 316 mA/m² (dark)	-1.0 V vs AgCl	Formate (12.8 mM)	Gupta and Verma, 2022 ⁶
N-doped Fe₃O₄@CDs		Geobacter sulfurreducens		30	~8 mA	-1.0 V vs AgCl	Methane (222.52 mL)	Cheng et al., 2022 ⁷
Carbon fibers		Methanobacterium		68.5 ± 4.8		-1.0 V vs. Ag/AgCl	Methane (298.0 ± 46.7 mL L ⁻¹ d ⁻¹)	Zhang et al., 2022 ⁸
Carbon brush		Methanothrix		18.8 %	~4.07 × 10 ⁻⁴ A/m ²	-0.5 V vs. SHE	Methane (5.2 mmol day ⁻¹)	Liu et al., 2020

RVC		Mixed microbial consortium	5 ± 2 μm	~100	-37 A m ⁻²	-0.85 V (vs SHE)	Acetate (1330 g m ⁻² day ⁻¹)	Flexer and Jourdin, 2020
MXene coated Biochar	64.05 m ² g-1	Firmicutes (66%), Proteobacteria (13%), and Bacteroidetes (12%)		12	-239.4 m ⁻²	-800 mv (vs AgCl)	Butyrate (~1000 mg L ⁻¹)	Tahir et al., 2021 ¹¹
Carbon paper		Enriched anaerobic sludge		74.15 ± 5	14.26 A m ⁻²	-0.85 V vs SHE	Acetic acid (197.50 ± 10 g m ⁻² day ⁻¹)	Answer et al., 2021 ¹²
3D bioprinted Carbon cloth		Sporomusa ovata	~1 mm	62.7±15.4	14.8 A m ⁻²	-800 mV vs Ag/AgCl	Acetate (104 g day ⁻¹ m ^{- 2})	Krige et al., 2021 ¹³

References (*these reference numbers are different from the main manuscript):

- 1. K. Tahir, N. Maile, A. A. Ghani, B. Kim, J. Jang and D. S. Lee, *Bioelectrochemistry*, 2022, **146**, 108140.
- 2. S. Han, H. Liu, C. Zhou and H.-j. Ying, *Journal of Materials Chemistry A*, 2019, **7**, 1115-1123.
- 3. K. Rengasamy, T. Ranaivoarisoa, W. Bai and A. Bose, *Nanotechnology*, 2020, **32**, 035103.
- 4. S. Bajracharya, A. Krige, L. Matsakas, U. Rova and P. Christakopoulos, *Chemosphere*, 2022, **287**, 132188.
- 5. H. N. Fitriana, S. Lee, H. S. Kim, J. Lee, Y. Lee, J.-S. Lee, H. Park, C. H. Ko, S. Y. Lim and S. Y. Lee, *Bioelectrochemistry*, 2022, **145**, 108102.
- 6. P. Gupta and N. Verma, *Chemical Engineering Journal*, 2022, **446**, 137029.
- 7. J. Cheng, R. Xia, H. Li, Z. Chen, X. Zhou, X. Ren, H. Dong, R. Lin and J. Zhou, ACS Sustainable Chemistry & Engineering, 2022, **10**, 3935-3950.
- 8. Z. Zhang, X. Lu, C. Niu, T. Cai, N. Wang, Y. Han, R. Zhang, Y. Song and G. Zhen, *Fuel*, 2022, **310**, 122450.
- 9. C. Liu, X. Yuan, Y. Gu, H. Chen, D. Sun, P. Li, M. Li, Y. Dang, J. A. Smith and D. E. Holmes, *ACS Sustainable Chemistry & Engineering*, 2020, **8**, 11368-11375.
- 10. V. Flexer and L. Jourdin, *Accounts of Chemical Research*, 2020, **53**, 311-321.
- 11. K. Tahir, W. Miran, J. Jang, N. Maile, A. Shahzad, M. Moztahida, A. A. Ghani, B. Kim, H. Jeon and D. S. Lee, *Science of The Total Environment*, 2021, **773**, 145677.
- 12. A. H. Anwer, N. Khan, M. D. Khan, S. Shakeel and M. Z. Khan, *Fuel*, 2021, **302**, 121124.
- 13. A. Krige, U. Rova and P. Christakopoulos, *Journal of Environmental Chemical Engineering*, 2021, **9**, 106189.

Cathode Material	Advantages	Disadvantages
Carnon nanotubes	High specific surface area, excellent mesopore density, and large current-carrying capacity.	Inadequate catalytic activity
Graphene	Promotes bacterial proliferation, large surface area, great electrical conductivity, high carrier mobility, exceptional intrinsic mechanical strength, and chemical stability.	Fragility in oxidative conditions
Graphene oxide	Promotes the development of a thick electroactive biofilm.	Less electrical conductivity, the more the chances of agglomeration.
Reduced Graphene oxide	Enables highly efficient bidirectional electron transfers among both bacteria and electrodes, cheaper, and good surface area.	Less conductivity than graphene, poor water affinity, and dispersibility.
Graphite	Affordable, porous conductive material, good biofilm adherence, preferential electroactive bacterium attachment, conductive.	Low oxidation rate, lower power density, strong contact resistance, and hydrophobicity.
Graphite felt	Good biofilm growth, surface area, porous nature, encourage direct electron transfer, cost- effective, reasonably high overpotentials.	Challenges with polarisation
<i>g</i> -C ₃ N ₄	Superior chemical stability, relative affordability, and intriguing electronic band structure.	Minimal surface area and less charge carrier movement.
Activated carbon	Significant surface area for microbial colonisation,	Can result in clogs, and Combustion danger

 Table S3. Comparison of advantages and disadvantages of various carbonaceous electrode materials

	cheap, high surface area, is readily available in market, is simple to process, has high porosity, and is extremely scalable	
Carbon felt	Sufficient contact area and volume for microbial colonization, transportation of microbes, and increased electroactivity.	Reduced catalytic efficiency and anode conductivity.
Carbon dots	Development of promising nano-bio interfaces by conjugation with biomolecules, great photostability, compact diameters, strong biocompatibility, and minimal toxicity.	Agglomeration.
Carbon fibers	Fibrous structure, high porosity, quick adsorption kinetics, and porous storage capacity.	Expensive, and complicated synthesis procedures.
Carbon brush	Porous surface area, low resistance, and good electrical conductivity. The dense morphology can prevent the biofouling of electrode materials.	Increased interface resistance and poor current density.
Reticulated vitreous carbon foam	Highly porous morphology, excellent conductivity, and large surface area promote mass dispersion and microbial development, low price, and simple handling.	Poor product yield and selectivity
MXenes	Exceptional conductivity, ion intercalation behaviour, and hydrophilicity.	Not enough ecological resilience.
Biochar	High porosity, low cost for physical activation,	Chemical activation is expensive

and renewability.
