Supporting information

Volcano Relationships and a New Activity Descriptor of 2D Transition Metal-Fe Layered Double Hydroxides for Efficient Oxygen Evolution Reaction

Ziyang Wu^a, Ting Liao^{a,b,*}, Sen Wang^c, Wei Li^c, Binodhya Wijerathn^c, Wanping Hu^d, Anthony P. O'Mullane^{b,c}, Yuantong Gu^{a,b} and Ziqi Sun^{b,c,*}

^a School of Mechanical, Medical and Process Engineering, Queensland University of Technology,
² George Street, Brisbane, QLD 4000, Australia
^b Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane,
QLD 4000, Australia
^c School of Chemistry and Physics, Queensland University of Technology, 2 George Street,
Brisbane, QLD 4000, Australia
^d Central Analytical Research Facility, Queensland University of Technology, 2 George Street,
Brisbane, QLD 4000, Australia

*Corresponding author: E-mail: t3.liao@qut.edu.au; ziqi.sun@qut.edu.au

Keywords: Alkaline oxygen evolution reaction, layered double hydroxides, iron incorporation, adsorption capacitance, adsorption energy barrier

Figure S1. SEM images of different samples.

Figure S2. Nitrogen adsorption and desorption curves of $Ni_{0.82}Fe_{0.18}$, $Co_{0.82}Fe_{0.12}$, $Cu_{0.78}Fe_{0.22}$ and $Mn_{0.78}Fe_{0.22}$ samples.

Figure S3. AFM images (a-d) of $Co_{0.82}Fe_{0.18}$, $Ni_{0.78}Fe_{0.22}$, $Cu_{0.78}Fe_{0.22}$, and $Mn_{0.78}Fe_{0.22}$ samples.

Co ₁ Fe ₀	Co _{0.99} Fe _{0.01}	Co _{0.96} Fe _{0.04}	Co _{0.82} Fe _{0.18}	Co _{0.71} Fe _{0.29}
Co _{0.64} Fe _{0.36}	Ni ₁ Fe ₀	Ni _{0.98} Fe _{0.02}	Ni _{0.94} Fe _{0.06}	Ni _{0.78} Fe _{0.22}
Ni _{0.65} F8 _{0.35}	Ni _{0.56} Fe _{0.44}	Cu	Cu _{0.78} E9 _{0.22}	Mn
	Mn _{0.78} Fe _{0.22}		Fe	

Figure S4. Optical images of different LDH samples.

Figure S5. Polarization curves at 5 mV s⁻¹ for $Cu_{1-x}Fe_x$ -LDHs.

Figure S6. Overpotentials at 10 mA cm⁻² of different LDH samples.

Figure S7. OER stability characterization with chronoamperometry test for 15 h.

Figure S8. High-resolution XPS spectrums of Mn $2p_{3/2}$ and Cu $2p_{3/2}$ of Mn_{0.78}Fe_{0.22} and Cu_{0.78}Fe_{0.22} samples after OER reaction.

Figure S9. Bode plots of Co_1Fe_0 , $Co_{0.99}Fe_{0.01}$, $Co_{0.96}Fe_{0.04}$, $Co_{0.82}Fe_{0.18}$, $Co_{0.71}Fe_{0.29}$ and $Co_{0.64}Fe_{0.36}$

samples.

 $Figure \ S10. \ Bode \ plots \ of \ Ni_{1}Fe_{0}, \ Ni_{0.98}Fe_{0.02}, \ Ni_{0.94}Fe_{0.06}, \ Ni_{0.78}Fe_{0.22}, \ Ni_{0.65}Fe_{0.35} \ and \ Ni_{0.56}Fe_{0.44}$

samples.

Figure S11. Bode plots of bare GC electrode, Fe, Mn, $Mn_{0.78}Fe_{0.22}$, Cu and $Cu_{0.78}Fe_{0.22}$ samples.

Figure S12. Nyquist plots (a-f) of Co_1Fe_0 , $Co_{0.99}Fe_{0.01}$, $Co_{0.96}Fe_{0.04}$, $Co_{0.82}Fe_{0.18}$, $Co_{0.71}Fe_{0.29}$ and

 $Co_{0.64}Fe_{0.36}$ samples.

Figure S13. Nyquist plots (a-f) of Ni_1Fe_0 , $Ni_{0.98}Fe_{0.02}$, $Ni_{0.94}Fe_{0.06}$, $Ni_{0.78}Fe_{0.22}$, $Ni_{0.65}Fe_{0.35}$ and

 $Ni_{0.56}Fe_{0.44}$ samples.

Figure S14. Nyquist plot of bare GC electrode, Fe, Mn, $Mn_{0.78}Fe_{0.22}$, Cu and $Cu_{0.78}Fe_{0.22}$ samples.

Figure S15 OER energy profile of NiOOH sample.

Figure S16 Top and side views of different oxygen evolution reaction steps.

	Fe (wt)%	Ni, Co, Mn, Cu (wt) %	Total Metal (wt) %	Fe (at)%	M (at)%	Fe (at):M(at)	Fe/(Fe+M) (at)
Ni ₁ Fe ₀	0.000	34.4970	34.4972	0.0000	0.5876	0.0000	0
Ni _{0.98} Fe _{0.02}	0.5901	39.9889	40.5791	0.0105	0.6812	0.0154	0.02
Ni _{0.94} Fe _{0.06}	2.1715	37.5607	39.7323	0.0387 0.6398		0.0606	0.06
Ni _{0.78} Fe _{0.22}	8.4555	30.5510	39.0065	0.1509	0.5204	0.2901	0.22
Ni _{0.65} Fe _{0.35}	13.5032	25.8717	39.3749	0.2411	0.4407	0.5470	0.35
Ni _{0.56} Fe _{0.44}	15.3287	20.5001	35.8289	0.2737	0.3492	0.7837	0.44
Co ₁ Fe ₀	0.0000	45.2177	45.2177	0.0000	0.7677	0.0000	0.00
Co _{0.99} Fe _{0.01}	0.4818	40.5923	41.0742	0.0086	0.6891	0.0124	0.01
Co _{0.96} Fe _{0.04}	1.4496	40.0096	41.4593	0.0258	0.6792	0.0381	0.04
Co _{0.82} Fe _{0.18}	8.0123	37.8048	45.8172	0.1430	0.6418	0.2229	0.18
Co _{0.71} Fe _{0.29}	13.9608	35.7513	49.7121	0.2493	0.6069	0.4107	0.29
Co _{0.64} Fe _{0.36}	18.1508	33.5852	51.7360	0.3241	0.5702	0.5684	0.36
Mn	0.0000	32.7108	32.7108	0.0000	0.5958	0.0000	0
Mn _{0.78} Fe _{0.22}	7.0123	24.4874	31.4997	0.1252	0.4460	0.2807	0.22
Cu	0.0000	37.4368	37.4368	0.0000	0.5895	0.0000	0.00
Cu _{0.78} Fe _{0.22}	7.2690	29.1453	36.4143	0.1298	0.4589	0.2828	0.22
Fe	41.6372	0.0000	41.6372	0.7435	0.0000	0.0000	1

Table S1. The elements contents of different samples calculated from ICP-OES experiment.

Table S2. The calculated TOF	(s ⁻¹) values of different sam	ples.
------------------------------	------------------	---------------------------	-------

$Co_1Fe_0(S^{-1})$	Co _{0.99} Fe _{0.01} (S ⁻	Co _{0.96} Fe _{0.04} (S ⁻	Co _{0.82} Fe _{0.18} (S ⁻	Co _{0.71} Fe _{0.29} (S ⁻	Co _{0.64} Fe _{0.36} (S ⁻
	1)	1)	1)	1)	1)
0.0352	0.06297	0.25567	0.45935	0.39473	0.39177
Ni_1Fe_0 (S ⁻¹)	Ni _{0.98} Fe _{0.02} (S ⁻¹)	Ni _{0.94} Fe _{0.06} (S ⁻¹)	Ni _{0.78} Fe _{0.22} (S ⁻¹)	Ni _{0.65} Fe _{0.35} (S ⁻¹)	Ni _{0.56} Fe _{0.44} (S ⁻¹)
0.0115	0.01466	0.30566	0.53701	0.50396	0.49916

Below are the tables of fitted values from different elements with the two equivalent circuit models:

Here, two constant phase elements (CPE) were used, which are CPE_{dl} and CPE_{ad} to represent the capacitance from double layer and intermediates adsorption. n is the constant phase exponent (0 < $n \le 1$). For the circuit without R_i, equation (1) [1] was used:

$$C_{\varphi} = CPE_{ad}^{1/n} \left(\frac{1}{R_{s}} + 1/R_{1}\right)$$
(1)

and for the circuit with R_i , equation (2) [2] was employed:

$$C_{\varphi} = \frac{\left(R_i \, CPE_{ad}\right)^{1/n}}{R_i} \tag{2}$$

Potential	Rs	CPE _{dl}	n ₁	R _{ct}	CPE _{ad}	n ₂	Ri	С
(V vs RHE)	(Ω)	(S·sec^n)		(Ω)	(S·sec^n)		(Ω)	(mF)
1.0365	11.50	6.06E-06	0.86	380.20	3.46E-05	0.71	-	0.00002
1.0865	13.53	5.15E-06	0.88	277.00	4.96E-05	0.71	-	0.00004
1.1365	12.97	4.23E-06	0.90	162.00	6.97E-05	0.72	-	0.00006
1.1865	12.01	4.05E-06	0.90	99.66	1.45E-04	0.65	-	0.00006
1.2365	9.18	1.62E-05	0.77	118.20	3.04E-04	0.64	-	0.00015
1.2865	11.67	1.50E-05	0.80	80.71	6.18E-04	0.64	-	0.00052
1.3365	13.32	2.80E-06	0.96	26.00	1.89E-03	0.75	-	0.00689
1.3865	10.28	1.09E-06	0.95	9.93	6.54E-03	0.77	-	0.03400
1.4365	11.81	1.32E-06	0.95	9.91	4.80E-03	0.73	-	0.05277
1.4865	12.15	3.48E-06	0.90	9.60	5.73E-03	0.75	52.71	0.05532
1.5365	14.43	1.26E-06	1.00	8.92	8.75E-03	0.81	35.23	0.09497
1.5865	10.58	1.67E-06	0.99	5.60	9.24E-03	0.86	24.91	0.10437
1.6365	12.12	1.55E-06	0.90	5.54	9.70E-03	0.93	16.24	0.12159
1.6865	10.88	5.29E-06	0.80	0.46	1.21E-02	0.93	21.46	0.15591

Table S3. EIS fitting data of sample Co_1Fe_0 in 1 KOH.

Potential	Rs	CPE _{dl}	n ₁	R _{ct}	CPE _{ad}	n ₂	Ri	С
(V vs RHE)	(Ω)	(S·sec^n)		(Ω)	(S·sec^n)		(Ω)	(mF)
1.0365	13.73	5.20E-05	0.85	192.20	0.0008	0.5423	-	0.00025
1.0865	14.25	5.79E-05	0.83	130.50	0.0010	0.5992	-	0.00072
1.1365	14.79	6.53E-05	0.89	71.20	0.0011	0.6348	-	0.00136
1.1865	14.06	7.32E-05	0.90	37.42	0.0014	0.6499	-	0.00214
1.2365	12.73	9.27E-05	0.84	33.02	0.0017	0.6673	-	0.00300
1.2865	14.45	3.23E-04	0.90	18.59	0.0023	0.6679	-	0.00459
1.3365	12.77	4.24E-04	0.70	18.30	0.0020	0.7073	-	0.00503
1.3865	14.19	4.80E-04	0.77	13.21	0.0028	0.7363	-	0.00981
1.4365	12.02	5.12E-04	0.71	12.12	0.0014	0.7437	346.9	0.01595
1.4865	12.34	5.97E-04	0.70	14.10	0.0019	0.8100	116.11	0.01904
1.5365	12.27	6.12E-04	0.74	6.40	0.0021	0.8361	79.95	0.02129
1.5865	12.79	6.77E-04	0.70	2.68	0.0027	0.8271	50.08	0.02592
1.6365	13.38	5.04E-04	0.78	2.69	0.0032	0.8810	32.81	0.03362
1.6865	12.73	2.43E-4	0.76	2.14	0.0029	0.9386	22.35	0.03516

Table S4. EIS fitting data of sample $Co_{0.99}Fe_{0.01}$ in 1 KOH.

Potential	Rs	CPE _{dl}	n ₁	R _{ct}	CPE _{ad}	n ₂	Ri	С
(V vs RHE)	(Ω)	(S·sec^n)		(Ω)	(S·sec^n)		(Ω)	(mF)
1.0365	13.58	3.01E-05	0.87	119.00	0.0016	0.57	-	0.00121
1.0865	11.02	1.21E-04	0.86	55.32	0.0022	0.56	-	0.00148
1.1365	10.50	8.68E-04	0.75	50.44	0.0021	0.63	-	0.00250
1.1865	10.14	1.12E-03	0.82	36.48	0.0028	0.68	-	0.00640
1.2365	9.85	1.45E-03	0.74	28.01	0.0031	0.73	-	0.01037
1.2865	10.11	1.78E-03	0.75	21.50	0.0035	0.74	-	0.01360
1.3365	10.15	1.96E-03	0.66	13.96	0.0046	0.78	-	0.02370
1.3865	10.98	3.52E-03	0.62	11.57	0.0050	0.78	-	0.02629
1.4365	9.96	1.01E-02	0.34	14.48	0.0056	0.84	-	0.04238
1.4865	9.73	1.78E-02	0.28	16.80	0.0050	0.88	-	0.04472
1.5365	12.27	3.12E-03	0.74	16.40	0.0033	0.99	79.95	0.04644
1.5865	9.84	4.11E-03	0.24	13.78	0.0044	0.94	41.64	0.05625
1.6365	9.83	7.74E-03	0.30	11.29	0.0048	0.90	17.36	0.05220
1.6865	9.34	6.13E-03	0.31	11.32	0.0053	0.92	11.24	0.05862

Table S5. EIS fitting data of sample $\text{Co}_{0.96}\text{Fe}_{0.04}$ in 1 KOH.

Potential	Rs	CPE _{dl}	n ₁	R _{ct}	CPE _{ad}	n ₂	Ri	С
(V vs RHE)	(Ω)	$(S \cdot sec^n)$		(Ω)	$(S \cdot sec^n)$		(Ω)	(mF)
1.0365	10.95	9.99E-07	0.94	69.46	0.0011	0.60	-	0.00074
1.0865	11.07	1.31E-06	0.93	27.61	0.0016	0.60	-	0.00122
1.1365	13.86	2.30E-03	0.53	18.64	0.0019	0.72	-	0.00545
1.1865	13.57	7.62E-04	0.74	34.46	0.0019	0.75	-	0.00720
1.2365	12.04	1.38E-03	0.66	28.07	0.0020	0.79	-	0.00965
1.2865	11.74	1.63E-03	0.69	19.08	0.0029	0.79	-	0.01468
1.3365	11.94	6.47E-03	0.65	9.90	0.0031	0.83	-	0.01980
1.3865	11.51	2.86E-03	0.73	9.01	0.0045	0.82	249.50	0.06554
1.4365	12.67	2.62E-03	0.78	5.28	0.0060	0.80	92.47	0.07437
1.4865	12.22	2.16E-03	0.83	3.17	0.0080	0.88	49.23	0.09994
1.5365	12.66	1.12E-03	0.84	2.00	0.0108	0.73	35.72	0.10830
1.5865	12.23	2.26E-03	0.64	2.76	0.0120	0.83	21.29	0.12950
1.6365	12.89	8.07E-04	0.71	2.43	0.0133	0.87	15.39	0.14935
1.6865	12.61	1.32E-04	0.85	2.17	0.0156	0.84	12.97	0.16258

Table S6. EIS fitting data of sample $\text{Co}_{0.82}\text{Fe}_{0.18}$ in 1 KOH.

Potential	Rs	CPE _{dl}	n ₁	R _{ct}	CPE _{ad}	n ₂	Ri	С
(V vs RHE)	(Ω)	(S·sec^n)		(Ω)	$(S \cdot sec^n)$		(Ω)	(mF)
1.0365	19.25	5.16E-07	0.97	144.30	0.0029	0.82	-	0.02133
1.0865	13.08	1.40E-06	0.89	48.34	0.0038	0.79		0.02289
1.1365	11.79	5.09E-06	0.80	24.49	0.0047	0.79		0.02793
1.1865	12.79	8.39E-06	0.79	14.88	0.0054	0.81		0.03629
1.2365	11.68	2.03E-05	0.72	13.69	0.0058	0.85		0.04589
1.2865	12.71	2.57E-05	0.73	10.23	0.0064	0.87		0.05540
1.3365	9.45	1.55E-04	0.73	11.06	0.0070	0.88		0.06302
1.3865	12.80	9.64E-05	0.68	6.34	0.0068	0.90	153.00	0.09740
1.4365	10.61	1.08E-04	0.41	7.85	0.0077	0.91	87.92	0.10569
1.4865	12.66	4.31E-04	0.71	2.63	0.0092	0.89	43.81	0.11760
1.5365	12.38	2.41E-03	0.38	5.73	0.0108	0.90	33.56	0.13868
1.5865	12.02	1.14E-03	0.59	3.53	0.0124	0.90	20.55	0.15196
1.6365	11.21	6.34E-03	0.53	4.12	0.0152	0.92	11.38	0.18678
1.6865	10.80	4.16E-04	0.04	4.34	0.0193	0.89	8.63	0.22089

Table S7. EIS fitting data of sample $\text{Co}_{0.71}\text{Fe}_{0.29}$ in 1 KOH.

Potential	Rs	CPE _{dl}	n ₁	R _{ct}	CPE _{ad}	n ₂	Ri	С
(V vs RHE)	(Ω)	$(S \cdot sec^n)$		(Ω)	$(S \cdot sec^n)$		(Ω)	(mF)
1.0365	11.72	8.20E-06	0.82	69.70	0.0034	0.85	-	0.02494
1.0865	12.89	1.15E-05	0.86	22.17	0.0041	0.82		0.02789
1.1365	12.17	8.45E-05	0.79	8.49	0.0046	0.84	-	0.03210
1.1865	13.79	5.52E-03	0.79	5.40	0.0051	0.86	-	0.03904
1.2365	12.63	5.97E-03	0.86	3.80	0.0050	0.92	-	0.04820
1.2865	10.25	1.81E-04	0.70	3.32	0.0064	0.89	-	0.05446
1.3365	13.26	6.97E-04	0.92	3.10	0.0069	0.91	-	0.06745
1.3865	11.50	7.66E-04	0.90	3.93	0.0076	0.90	-	0.08090
1.4365	11.21	1.21E-03	0.77	2.08	0.0069	0.94	138.40	0.09852
1.4865	12.04	3.97E-03	0.63	1.38	0.0078	0.96	107.40	0.11104
1.5365	12.17	4.38E-03	0.61	0.96	0.0088	0.94	76.07	0.12164
1.5865	11.9	5.25E-03	0.40	1.31	0.0095	0.98	41.35	0.13359
	6							
1.6365	13.31	3.69E-04	0.51	1.25	0.0115	0.96	40.70	0.15901
1.6865	11.60	3.35E-04	1.00	2.33	0.0014	0.97	28.17	0.01874

Table S8. EIS fitting data of sample $\mathrm{Co}_{0.64}\mathrm{Fe}_{0.36}$ in 1 KOH.

Potential	Rs	CPE _{dl}	n ₁	R _{ct}	CPE _{ad}	n ₂	Ri	С
(V vs RHE)	(Ω)	$(S \cdot sec^n)$		(Ω)	$(S \cdot sec^n)$		(Ω)	(mF)
1.0365	16.56	2.46E-06	0.83	2062.00	1.55E-05	0.75	-	1.32E-05
1.0865	16.51	2.50E-06	0.83	1961.00	1.68E-05	0.75	-	1.63E-05
1.1365	16.47	2.54E-06	0.83	1834.00	1.92E-05	0.76	-	2.22E-05
1.1865	16.49	2.48E-06	0.83	1608.00	2.44E-05	0.78		3.62E-05
1.2365	16.38	2.54E-06	0.83	1359.00	4.78E-05	0.78		9.38E-05
1.2865	16.56	2.29E-06	0.85	945.30	8.27E-05	0.81		2.47E-04
1.3365	16.21	5.30E-06	0.79	388.60	1.13E-04	0.85		5.39E-04
1.3865	16.75	3.00E-05	0.73	229.80	1.10E-04	0.66	12490.00	1.85E-03
1.4365	17.00	2.74E-05	0.76	235.10	1.65E-04	0.69	3709.00	1.89E-03
1.4865	17.02	2.43E-05	0.76	245.60	2.05E-04	0.86	1660.00	2.46E-03
1.5365	17.40	2.17E-05	0.75	268.50	3.79E-04	0.86	995.40	4.65E-03
1.5865	17.74	2.04E-05	0.74	279.70	5.07E-04	0.88	620.20	6.19E-03
1.6365	18.22	2.67E-05	0.75	244.80	6.10E-04	0.88	472.00	7.41E-03
1.6865	18.60	1.45E-05	0.75	236.10	7.12E-04	0.87	353.10	8.25E-03

Table S9. EIS fitting data of sample Ni_1Fe_0 in 1 KOH.

Potential	Rs	CPE _{dl}	n ₁	R _{ct}	CPE _{ad}	n ₂	Ri	С
(V vs RHE)	(Ω)	$(S \cdot sec^n)$		(Ω)	$(S \cdot sec^n)$		(Ω)	(mF)
1.0365	8.94	6.93E-06	0.83	570.60	1.32E-05	0.75	-	9.82E-06
1.0865	8.97	6.99E-06	0.83	561.30	1.34E-05	0.76	-	1.13E-05
1.1365	8.96	6.72E-06	0.83	505.70	1.48E-05	0.79	-	1.87E-05
1.1865	9.07	5.64E-06	0.85	355.20	2.21E-05	0.78	-	2.77E-05
1.2365	14.39	8.76E-06	0.83	792.90	1.36E-04	0.85	-	6.46E-04
1.2865	8.74	1.14E-05	0.79	577.30	2.29E-04	0.80	-	7.07E-04
1.3365	9.19	6.31E-06	0.86	152.50	4.58E-04	0.80	-	1.61E-03
1.3865	9.28	7.29E-06	0.86	14.00	1.92E-03	0.82	-	1.02E-02
1.4365	9.31	2.67E-05	0.75	13.80	5.81E-03	0.83	-	4.15E-02
1.4865	8.48	6.00E-04	0.77	35.36	4.17E-03	0.70	150.90	4.89E-02
1.5365	9.90	7.28E-03	0.72	1.42	5.37E-03	0.90	378.00	8.31E-02
1.5865	8.38	3.18E-03	0.29	1.64	6.38E-03	0.90	103.40	8.70E-02
1.6365	9.75	1.26E-03	0.70	6.90	7.55E-03	0.84	67.08	9.48E-02
1.6865	9.44	1.27E-03	0.80	8.10	7.46E-03	0.85	55.81	9.13E-02

Table S10. EIS fitting data of sample $Ni_{0.98}Fe_{0.02}$ in 1 KOH.

Potential	Rs	CPE _{dl}	n_1	R _{ct}	CPE _{ad}	n ₂	Ri	С
(V vs RHE)	(Ω)	(S·sec^n)		(Ω)	(S·sec^n)		(Ω)	(mF)
1.0365	9.79	8.61E-06	0.81	644.70	1.09E-05	0.76	-	8.75E-06
1.0865	9.82	8.49E-06	0.81	616.10	2.14E-05	0.76	-	1.89E-05
1.1365	9.86	8.07E-06	0.81	543.20	4.32E-05	0.83	-	1.27E-04
1.1865	9.07	5.24E-06	0.85	237.90	7.52E-05	0.84	-	2.67E-04
1.2365	9.77	5.18E-06	0.85	48.14	9.77E-05	0.83	-	3.02E-04
1.2865	9.62	1.31E-05	0.77	99.40	2.92E-04	0.80	-	9.31E-04
1.3365	9.93	8.85E-05	0.81	38.20	7.29E-04	0.69	-	1.07E-03
1.3865	9.06	1.85E-05	0.69	41.70	3.95E-04	0.85	-	2.04E-03
1.4365	10.13	2.87E-05	0.74	14.24	6.37E-04	0.77	102.40	4.08E-03
1.4865	9.77	5.13E-05	0.887	8.82	8.68E-04	0.83	68.01	6.83E-03
1.5365	9.05	3.54E-05	0.74	1.03	8.45E-04	0.89	57.22	8.33E-03
1.5865	10.29	1.08E-04	0.70	4.67	1.17E-03	0.84	28.18	8.92E-03
1.6365	9.53	5.29E-04	0.76	1.55	1.21E-03	0.90	17.40	1.12E-02
1.6865	10.25	8.62E-05	0.70	4.25	1.38E-03	0.85	10.77	9.42E-03

Table S11. EIS fitting data of sample $\mathrm{Ni}_{0.94}\mathrm{Fe}_{0.06}$ in 1 KOH.

.

Potential	Rs	CPE _{dl}	n ₁	R _{ct}	CPE _{ad}	n ₂	Ri	С
(V vs RHE)	(Ω)	(S·sec^n)		(Ω)	(S·sec^n)		(Ω)	(mF)
1.0365	10.54	1.64E-06	0.80	42.02	1.56E-03	0.66	-	2.31E-03
1.0865	9.51	6.29E-05	0.60	68.93	2.20E-03	0.70	-	5.65E-03
1.1365	9.52	7.24E-04	0.71	57.78	2.17E-03	0.80	-	1.10E-02
1.1865	9.28	9.91E-04	0.53	32.87	2.62E-03	0.84	-	1.75E-02
1.2365	10.13	4.60E-04	0.62	46.79	3.17E-03	0.84	-	2.56E-02
1.2865	10.13	7.75E-04	0.62	10.95	4.27E-03	0.85	-	3.18E-02
1.3365	9.70	1.37E-03	0.66	8.86	4.92E-03	0.85	-	3.64E-02
1.3865	12.95	7.40E-03	0.74	8.60	6.08E-03	0.84	-	4.43E-02
1.4365	10.91	1.53E-03	0.55	3.91	5.75E-03	0.89	85.76	7.54E-02
1.4865	9.70	2.02E-03	0.58	2.59	7.42E-03	0.85	41.67	8.61E-02
1.5365	9.58	2.51E-03	0.65	2.72	9.80E-03	0.76	26.83	9.25E-02
1.5865	10.57	2.42E-02	0.54	6.16	1.15E-02	0.92	11.09	1.38E-01
1.6365	10.71	3.63E-02	0.62	3.14	1.43E-02	0.93	9.15	1.76E-01
1.6865	10.85	6.63E-03	0.62	3.47	1.79E-02	0.89	3.44	1.82E-01

Table S12. EIS fitting data of sample $\mathrm{Ni}_{0.78}\mathrm{Fe}_{0.22}$ in 1 KOH.

Potential (V vs RHE)	Rs (Ω)	CPE _{dl} (S·sec^n)	n ₁	R _{ct} (Ω)	CPE_{ad} (S·sec^n)	n ₂	Ri (Ω)	C (mF)
1.0365	9.18	1.01E-05	0.74	209.80	4.15E-05	0.79		7.43E-05
1.0865	9.17	9.40E-06	0.75	198.60	4.37E-05	0.81	-	9.81E-05
1.1365	9.18	8.63E-06	0.75	187.00	4.68E-05	0.86	-	1.97E-04
1.1865	9.28	8.23E-06	0.76	178.80	5.37E-05	0.87	-	2.56E-04
1.2365	8.21	1.22E-05	0.72	195.00	6.71E-05	0.87	-	3.17E-04
1.2865	9.46	5.84E-06	0.79	124.60	1.48E-04	0.86	-	7.28E-04
1.3365	8.02	1.85E-05	0.70	161.50	1.15E-03	0.76	-	3.79E-03
1.3865	9.62	2.49E-06	0.89	33.54	2.96E-03	0.72	-	9.57E-03
1.4365	8.24	2.28E-05	0.74	12.01	3.18E-03	0.82	-	1.85E-02
1.4865	6.14	2.33E-05	0.79	28.00	3.75E-03	0.89	-	3.35E-02
1.5365	8.20	2.77E-05	0.67	18.76	5.56E-03	0.89	18.17	5.98E-02
1.5865	9.36	4.46E-05	0.62	10.85	7.48E-03	0.84	9.87	6.49E-02
1.6365	7.90	1.08E-4	0.67	8.32	7.95E-03	0.86	5.22	6.69E-02
1.6865	8.60	7.29E-05	0.63	4.45	8.42E-03	0.90	1.17	7.13E-02

Table S13. EIS fitting data of sample $\mathrm{Ni}_{0.65}\mathrm{Fe}_{0.35}$ in 1 KOH.

.

Potential (V vs RHF)	Rs	CPE_{dl}	n_1	R _{ct}	CPE_{ad}	n ₂	Ri (Q)	C (mF)
(* *3 Kill)	(32)			(22)			(32)	()
1.0365	10.81	9.17E-07	0.85	1611.00	1.78E-05	0.76	-	1.64E-05
1.0865	11.79	9.44E-07	0.85	1416.00	1.95E-05	0.76	-	2.02E-05
1.1365	10.01	1.30E-06	0.83	1250.00	2.26E-05	0.76	-	2.18E-05
1.1865	11.58	1.26E-06	0.83	984.20	3.53E-05	0.72	-	2.31E-05
1.2365	11.49	1.44E-06	0.83	751.50	9.19E-05	0.73	-	1.02E-04
1.2865	11.19	2.36E-06	0.79	577.90	1.64E-04	0.79	-	4.45E-04
1.3365	11.07	4.47E-06	0.75	303.20	2.63E-04	0.76	-	5.63E-04
1.3865	8.86	4.33E-05	0.70	20.46	1.49E-03	0.80	-	6.47E-03
1.4365	12.06	2.74E-06	0.84	12.79	1.19E-03	0.81	125.50	1.08E-02
1.4865	12.45	1.92E-06	0.89	12.81	2.86E-03	0.75	92.52	2.65E-02
1.5365	10.66	1.12E-05	0.73	13.44	3.45E-03	0.82	43.19	3.21E-02
1.5865	11.79	2.97E-05	0.73	3.03	4.46E-03	0.84	24.49	4.19E-02
1.6365	10.04	1.08E-5	0.77	3.02	7.00E-03	0.83	5.22	5.01E-02
1.6865	10.00	7.29E-05	0.73	4.45	7.72E-03	0.87	1.17	5.40E-02

Table S14. EIS fitting data of sample $\mathrm{Ni}_{0.56}\mathrm{Fe}_{0.44}$ in 1 KOH.

Potential (V vs RHE)	Rs (Q)	CPE _{dl} (S:sec^n)	n ₁	R _{ct}	CPE _{ad} (S:sec^n)	n ₂	Ri (Q)	C (mF)
	(11)	(2 200 1)		(12)	(5 500 1)		(11)	(
1.0365	9.59	1.27E-05	0.76	140.10	1.10E-05	0.60	-	1.49E-05
1.0865	9.41	1.64E-05	0.74	174.10	1.12E-05	0.61	-	1.92E-05
1.1365	9.30	1.97E-05	0.73	194.00	1.15E-05	0.64	-	3.17E-05
1.1865	9.26	2.15E-05	0.72	188.20	1.38E-05	0.66	-	5.46E-05
1.2365	9.20	2.20E-05	0.72	161.60	2.28E-04	0.62	-	7.27E-05
1.2865	9.00	2.99E-05	0.69	157.80	3.76E-04	0.66	-	2.53E-04
1.3365	9.31	2.73E-05	0.74	87.27	5.54E-04	0.61	-	2.51E-04
1.3865	9.11	3.87E-05	0.92	30.97	9.24E-04	0.46	-	3.41E-04
1.4365	9.23	3.57E-05	0.87	39.84	5.28E-04	0.57	675.50	3.50E-04
1.4865	9.93	2.11E-04	0.91	36.02	5.36E-04	0.57	351.10	7.55E-04
1.5365	10.69	2.48E-04	0.94	33.43	5.82E-04	0.57	218.10	8.62E-04
1.5865	10.62	3.06E-04	0.97	31.27	6.08E-04	0.84	152.90	4.44E-03
1.6365	10.29	3.17E-04	0.97	33.68	4.60E-04	0.74	107.10	3.23E-03
1.6865	10.45	2.94E-04	0.90	26.78	3.60E-04	0.70	90.76	1.64E-03

Table S15. EIS fitting data of sample $Mn_{0.78}Fe_{0.22}$ in 1 KOH.

Potential	Rs	CPE _{dl}	n ₁	R _{ct}	CPE _{ad}	n ₂	Ri	С
(V vs RHE)	(Ω)	(S·sec^n)		(Ω)	(S·sec^n)		(Ω)	(mF)
1.0365	9.96	1.10E-05	0.82	239.80	1.65E-04	0.60	-	3.20E-05
1.0865	9.90	1.24E-05	0.82	219.30	1.58E-04	0.61	-	3.16E-05
1.1365	9.85	1.48E-05	0.80	196.80	1.64E-04	0.62	-	4.40E-05
1.1865	9.87	1.58E-05	0.80	168.30	2.15E-04	0.62	-	6.02E-05
1.2365	9.80	2.04E-05	0.78	153.80	3.18E-04	0.61	-	1.05E-04
1.2865	9.71	2.40E-05	0.77	144.20	4.39E-04	0.64	-	2.72E-04
1.3365	9.81	2.27E-05	0.77	112.80	5.11E-04	0.66	-	4.35E-04
1.3865	9.04	2.21E-05	0.83	72.70	6.98E-04	0.54	-	1.14E-04
1.4365	9.09	2.53E-05	0.80	88.38	4.49E-04	0.61	965.00	4.70E-03
1.4865	9.42	2.46E-05	0.81	85.92	3.80E-04	0.61	662.20	2.27E-03
1.5365	9.74	3.15E-05	0.83	69.91	3.85E-04	0.76	366.00	1.18E-03
1.5865	9.39	3.44E-05	1.00	11.78	4.15E-04	0.88	252.10	4.30E-03
1.6365	9.34	3.46E-05	1.00	9.72	1.47E-04	0.75	155.20	9.09E-04
1.6865	9.60	2.54E-05	0.81	0.02	1.98E-04	0.08	164.80	1.50E-04

Table S16. EIS fitting data of sample Mn in 1 KOH.

.

Potential	Rs	CPE _{dl}	n ₁	R _{ct}	CPE _{ad}	n ₂	Ri	С
(V vs RHE)	(Ω)	(S·sec^n)		(Ω)	(S·sec^n)		(Ω)	(mF)
1.0365	10.55	1.23E-06	0.92	569.90	6.20E-05	0.49		4.07E-07
1.0865	10.55	1.36E-06	0.91	630.70	5.74E-05	0.52		7.88E-07
1.1365	10.41	1.53E-06	0.90	627.40	5.72E-05	0.54		1.39E-06
1.1865	10.35	1.88E-06	0.89	620.50	6.13E-05	0.56		2.53E-06
1.2365	10.22	2.14E-06	0.88	545.40	7.68E-05	0.55		3.06E-06
1.2865	10.11	2.64E-06	0.86	478.20	1.04E-04	0.54		4.64E-06
1.3365	10.18	2.42E-06	0.87	303.10	1.44E-04	0.51		3.36E-06
1.3865	10.54	1.32E-06	0.92	121.20	2.01E-04	0.45		1.32E-06
1.4365	10.52	1.70E-06	0.90	127.20	1.70E-04	0.50	5864.00	2.43E-03
1.4865	10.80	1.03E-06	0.95	84.95	1.42E-04	0.51	2885.00	8.59E-04
1.5365	11.06	9.09E-07	0.96	76.08	1.07E-04	0.54	1644.00	3.53E-04
1.5865	11.52	6.64E-07	0.99	61.04	9.83E-05	0.84	1007.00	9.03E-04
1.6365	11.89	5.99E-07	1.00	45.25	1.20E-04	0.50	719.60	1.49E-04
1.6865	11.51	2.52E-04	0.37	1.00	5.66E-07	1.00	677.10	8.09E-05

Table S17. EIS fitting data of sample $\mathrm{Cu}_{0.78}\mathrm{Fe}_{0.22}$ in 1 KOH.

Potential	Rs	CPE _{dl}	n1	R _{ct}	CPE _{ad}	n ₂	Ri	С
(V vs RHE)	(Ω)	$(S \cdot sec^n)$		(Ω)	$(S \cdot sec^n)$		(Ω)	(mF)
1.0365	8.89	7.19E-06	0.84	354.00	5.60E-05	0.70	-	2.83E-05
1.0865	8.91	7.09E-06	0.84	297.80	6.05E-05	0.69	-	2.98E-05
1.1365	8.92	7.44E-06	0.84	243.70	6.52E-05	0.69	-	3.19E-05
1.1865	7.16	8.87E-05	0.60	11.02	4.93E-14	0.80		5.08E-5
1.2365	8.85	8.96E-06	0.82	194.70	8.96E-05	0.67	-	3.69E-05
1.2865	8.84	9.98E-06	0.81	166.80	1.18E-04	0.65	-	4.09E-05
1.3365	8.85	1.16E-05	0.80	124.90	1.52E-04	0.65	-	5.74E-05
1.3865	8.89	1.02E-05	0.82	90.59	2.01E-04	0.64	-	7.69E-05
1.4365	9.14	3.04E-06	0.51	9740.00	9.58E-08	0.73	46790.00	1.92E-05
1.4865	9.68	3.87E-06	0.48	40100.00	5.27E-07	0.78	55430.00	2.79E-05
1.5365	9.17	8.40E-06	0.84	54.62	3.41E-04	0.62	1956.00	3.79E-04
1.5865	9.23	7.89E-06	0.85	41.05	2.19E-04	0.75	564.70	1.54E-03
1.6365	9.66	3.81E-06	0.91	33.48	6.37E-04	0.50	495.10	2.83E-03
1.6865	10.14	1.80E-06	0.98	18.33	8.30E-04	0.39	373.00	1.83E-03

Table S18. EIS fitting data of sample Cu in 1 KOH.

Potential	Rs	CPE _{dl}	n ₁	R _{ct}	CPE _{ad}	n ₂	Ri	С
(V vs RHE)	(Ω)	$(S \cdot sec^n)$		(Ω)	$(S \cdot sec^n)$		(Ω)	(mF)
1.0365	10.30	2.39E-06	0.92	2776.00	1.36E-05	0.71		4.96E-06
1.0865	10.32	2.30E-06	0.92	2480.00	1.38E-05	0.73		6.86E-06
1.1365	10.32	2.24E-06	0.93	2207.00	1.44E-05	0.73		8.55E-06
1.1865	10.40	2.11E-06	0.93	1922.00	1.60E-05	0.72		7.77E-06
1.2365	10.47	1.86E-06	0.95	1371.00	2.15E-05	0.67		4.88E-06
1.2865	10.48	1.80E-06	0.95	1207.00	3.14E-05	0.62		3.15E-06
1.3365	10.48	1.71E-06	0.95	914.90	4.64E-05	0.58		2.76E-06
1.3865	10.71	1.02E-06	1.00	186.20	9.09E-05	0.40		3.74E-08
1.4365	10.45	1.90E-06	0.95	730.50	5.29E-05	0.62	5881.00	3.73E-04
1.4865	10.32	2.42E-06	0.92	0.00	2.82E-04	0.18	6641000	4.20E+43
1.5365	10.71	1.93E-06	0.95	649.90	2.82E-05	0.73	1005.00	1.07E-04
1.5865	10.94	2.11E-06	0.94	618.40	8.55E-05	0.98	306.70	1.14E-03
1.6365	11.37	2.02E-06	0.95	403.80	5.59E-06	0.90	197.70	7.98E-03
1.6865	11.91	2.08E-06	0.95	293.00	5.28E-06	0.90	117.50	7.54E-03

Table S19. EIS fitting data of sample Fe in 1 KOH.

References:

•

1. R. Ge, Y. Wang, Z. Li, M. Xu, S.-M. Xu, H. Zhou, K. Ji, F. Chen, J. Zhou, H. Duan, Selective Electrooxidation of Biomass-Derived Alcohols to Aldehydes in a Neutral Medium: Promoted Water Dissociation over a Nickel-Oxide-Supported Ruthenium Single-Atom Catalyst, Angewandte Chemie International Edition 61 (19) (2022) e202200211.

2. F. Dionigi, J. Zhu, Z. Zeng, T. Merzdorf, H. Sarodnik, M. Gliech, L. Pan, W.-X. Li, J. Greeley, P. Strasser, Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3d-Transition Metal Layered Double Hydroxides, Angewandte Chemie International Edition 60 (26) (2021) 14446-14457.