Electronic Supplementary Information

Controlling Selectivity for Dechlorination of Poly(Vinyl Chloride) with XantphosRhCl

Nancy Bush, ^{†,a} Mikiyas K. Assefa, ^{†,a} Selin Bac, ^b Shaama Mallikarjun Sharada^{*a,b} and Megan E. Fieser^{*a,c}

^aDepartment of Chemistry, University of Southern California, Los Angeles, California 90089, Email: fieser@usc.edu

^bMork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA, Email: ssharada@usc.edu

^cWrigley Institute for Environmental Studies, University of Southern California, Los Angeles, California 90089

[†]Authors contributed equally.

1.	General Considerations	S4
2.	Synthesis of (xantphos)RhCl	S6
	Fig. S1 ¹ H NMR spectrum of (xantphos)RhCl complex in C ₆ D ₆	S7
	Fig. S2 ${}^{31}P{}^{1}H$ NMR spectrum of (xantphos)RhCl complex in C ₆ D ₆	S7
	Fig. S3 Thermal ellipsoid plot of 2[(xantphos)(COD)RhCl]·THF·C ₆ D ₆ .	S8
	Table S1 Crystallographic details for 2[(xantphos)(COD)RhCl]·THF·C ₆ D ₆	S9
3.	General Procedures for PVC Dechlorination Reactions	S10
4.	Optimization of Reaction Conditions	S11
	Table S2 Optimizations of catalytic conditions for each hydride source	S11
	Table S3 Control reactions to understand the reactivity of solvent and hydride	S12
	sources	
5.	Weights	S13
	Table S4 Following the mass recovery of reactions for evidence of side	S13
	reactions	
	Fig. S4 IR spectra of low molecular weight PVC (CAS: 9002-86-2, Sigma	S14
	Aldrich, bottom) and solids from mother liquor of Table S2, entry 2c' (top),	
	showing no observable PVC remaining	~
	Fig. S5 ¹ H NMR spectra in THF of low molecular weight PVC (CAS: 9002-	S15
	86-2, Sigma Aldrich, bottom), solids from mother liquor of Table S2 , entry	
	2c', and polymer products from Table S2 , entries 2c' and 2e', showing no	
	observable PVC remaining	044
6.	ATR-IR Spectroscopy	S16
	Fig. S6 IR spectrum of low molecular weight PVC	SI7
	Fig. S7 IR spectrum of HDPE pellets	S18 010
	Fig. 88 IR spectrum of Table S2, Entry Ia and Ia' with the Et ₃ S1H H source	S19 520
	Fig. 89 IR spectrum of Table S2, Entry 1b with the Et ₃ S1H H source	S20
	Fig. S10 IK spectrum of Table S2, Entry IC with the Et ₃ S1H H source	521 522
	Fig. S11 IK spectrum of Table S2, Entry 1d and 1d' with the Et ₃ S1H H source	522 522
	Fig. 512 IK spectrum of Table S2, Entry 2a with the NaHCO ₂ H source	523

Fig. S13 IR spectrum of Table S2, Entry 2b with the NaHCO ₂ H source	S24
Fig. S14 IR spectrum of Table S2, Entry 2c and 2c' with the NaHCO ₂ H source	S25
Fig. S15 IR spectrum of Table S2, Entry 2c and 2c" with the NaHCO ₂ H source,	S26
showing consistency of small and large scale reactions	
Fig. S16 IR spectrum of Table S2, Entry 2d with the NaHCO ₂ H source	S27
Fig. S17 IR spectrum of Table S2, Entry 2e and 2e' with the NaHCO ₂ H source	S28
Fig. S18 IR spectrum of Table S2, Entry 3a with the NaH H source	S29
Fig. S19 IR spectrum of Table S2, Entry 3b with the NaH H source	S30
Fig. S20 IR spectrum of Table S2, Entry 3c with the NaH H source	S31
Fig. S21 IR spectrum of Table S2, Entry 3d and 3d' with the NaH H source	S32
Fig. S22 IR spectrum of Table S3, Entry 1a control reaction	S33
Fig. S23 IR spectrum of Table S3, Entry 1b control reaction	S34
Fig. S24 IR spectrum of Table S3, Entry 1c control reaction	S35
Fig. S25 IR spectrum of Table S3, Entry 1d control reaction	S36
Fig. S26 IR spectrum of Table S3, Entry 2a control reaction	S37
Fig. S27 IR spectrum of Table S3, Entry 2b control reaction	S38
Fig. S28 IR spectrum of Table S3, Entry 3a control reaction	S39
Fig. S29 IR spectrum of Table S3, Entry 3b control reaction	S40
Fig. S30 IR spectrum of Table S3, Entry 4a control reaction	S41
NMR Spectroscopy	S42
Fig. S31 ¹ H NMR spectrum of the polymer product from Table S2, entry 1a	S42
with Et ₃ SiH (Table S2, entry 3b)	~
Fig. S32 ¹ H NMR spectrum of the polymer product from Table S2, entry 1d'	S43
with Et ₃ SiH (Table S2, entry 1a)	~
Fig. S33 ¹ H NMR of polymer product from Table S2, entry 2c' with NaHCO ₂	S44
Fig. S34 ¹ H NMR spectrum of the polymer product from Table S2, entry 2c ⁷	S45
with NaHCO ₂ $\mathbf{E}_{13} = \frac{1}{2} \mathbf{G}_{13} \mathbf{G}_{14}$ $\mathbf{E}_{13} = \frac{1}{2} \mathbf{G}_{14} \mathbf{G}_{14}$	046
Fig. S35 $^{13}C{^{1}H}$ NMR spectrum of the polymer product from Table S2, entry	S46
$2c^{\prime\prime}$ with NaHCO ₂	C 48
Fig. S36 ⁴ H NMR spectrum of the polymer product from Table S2, entry 2e ⁻	847
with NaHCO ₂ $\mathbf{E} = \mathbf{E} = \mathbf{E} + $	C 40
Fig. S37 ⁴ H NMR spectrum of polymer product from Table S2, entry 3b with	848
	C 40
Fig. S38 'H NMR spectrum of polymer product from Table S2, entry 3d with	849
NaH $\mathbf{F} = \mathbf{S}^{2} \mathbf{O} [\mathbf{U} \mathbf{N} \mathbf{D}]$ such that $\mathbf{f} = \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{S} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{S} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$	Q Z 0
Fig. 539 'H NMR spectrum of polymer product from Table S2, entry 3d' with	220
NaH $\mathbf{F} = \mathbf{G} \mathbf{A} \mathbf{O} [\mathbf{U} \mathbf{N} \mathbf{M} \mathbf{D}]$ where the second seco	051
Fig. S40 ⁴ H NMR spectrum of polymer product from the toy lizard commercial	221
PVC plastic reaction F := S41 UNMP and the function that for a state place	053
Fig. 841 'H NNIR spectrum of polymer product from coloriess PVC commercial	997
uag itaciloli Saanning Elastron Mianosaany Elastron Disparsiva V Day Spectroscory	852
Scanning Electron Microscopy-Electron Dispersive A-Kay Spectroscopy (SEM EDV)	223
(SENI-EDA) Fig. \$42 SEM images of EDV comple leastions for the product from the	852
optimized reaction with NaHCO ₂ (Table S2, entry 2c). Spectrum numbers	223

7.

8.

optimized reaction with NaHCO₂ (Table S2, entry 2c) . Sp correspond to sample numbers in Table S5. below.

	Table S5. EDX data averaged over 12 sample locations and individual values	S54
	for the product from the optimized reaction with NaHCO ₂ (Table S2, entry 2c)	
	Table S6. SEM-EDX data for each sample location for the product from the	S54
	optimized reaction with NaHCO ₂ (Table S2, entry 2c) ^a	
	Fig. S43 SEM image (top) and EDX spectrum (bottom) of the polymer product	S55
	from the optimized reaction with Et ₃ SiH (Table S2, entry 1a')	
	Fig. S44 SEM image (top) and EDX spectrum (bottom) of the polymer product	S56
	from the optimized reaction with NaHCO ₂ (Table S2, entry 2c')	
	Fig. S45 SEM image (top) and EDX spectrum (bottom) of the polymer product	S57
	from the optimized reaction with NaH (Table S2, entry 3d')	
	Table S7. EDX data comparison of polymer products with different H sources	S58
9.	Gel Permeation Chromatography (GPC)	S59
	Fig. S46 GPC data for polymer product from optimized reaction with NaHCO ₂	S59
	(Table S2, entry 2c")	
	Fig. S47 GPC data for low molecular weight PVC	S60
10.	Thermogravimetric Analysis (TGA)	S61
	Fig. S48 TGA of starting low molecular weight PVC and polymer products from	S61
	selected samples: Table S2, entry 1a'; Table S2, entry 2c; Table S2, entry 2c';	
	Table S2, entry 3d'.	
11.	Elemental Analysis, CHNS	S62
	Table S8. CHNS data of selected polymer products	S62
12.	Computational Methods and Models	S63
	Table S9. TOFs (h ⁻¹) calculated at 110°C using the energetic span model and	S63
	zero-point corrected electronic energies.	
13.	References	S64

1. General Considerations

All reactions were set up under anaerobic and anhydrous conditions in a Vacuum Atmospheres OMNI glovebox under a dinitrogen atmosphere. Tetrahydrofuran (THF) was sparged with UHP argon (Praxair) and dried by passage over Q-5 and molecular sieves using a JCMeyer solvent purification system. Poly(vinyl chloride) (Aldrich, $M_n = 67.6$ kDa, D = 1.76 was dried under reduced pressure at 110 °C for 24 h prior to use. Commercial PVC lizard MICHLEY brand toys and CZWESTC brand bags were purchased from Amazon. For reactions, they were frozen with liquid nitrogen, ground into a powder using a coffee grinder, and dried under reduced pressure at 110 °C for 24 h prior to use. Anhydrous grade *N*,*N*-dimethylacetamide (DMA, Aldrich), C_6D_6 and $C_2D_2Cl_4$ (Cambridge Isotope Laboratories) were purchased from commercial suppliers and used as received.

¹H NMR and 13C {¹H} NMR spectra were recorded on a Varian 400-MR 2-Channel NMR spectrometer or a Varian VNMRS-600 3-Channel NMR spectrometer at room temperature or 110 °C and referenced against residual solvent resonances. Infrared (IR) spectra were recorded on an Agilent Cary 630 FTIR spectrometer equipped with a single reflection diamond (Di) attenuated total reflectance (ATR) module. Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA) data were collected using a Mettler-Toledo TGA/DSC+ instrument. The thermal measurements were made at a heating rate of 10 °C/min and a dinitrogen flow rate of 40 mL/min. T_m values were obtained from the peak maximum in the second heating curve, and T_d was determined at 5% mass loss. Elemental analyses were carried out on a Thermo Flash 2000 Elemental Analyzer. Energy-dispersive X-ray spectroscopy (EDX) measurements were made on a Thermo Scientific Helios G4 PFIB UXe instrument equipped with an Oxford UltimMax 170 Silicon Drift Detector and processed with a Aztec software. EDX measurements were collected in triplicate on three or four different locations of a sample (a total of 9 or 12 spectra per sample), and average values thereof are tabulated herein. Gel permeation chromatography was carried out on an Agilent 1260 Infinity II GPC instrument calibrated with monodisperse polystyrene standards at 140 °C in 1,2,4-tricholorbenzene.

Single crystal X-ray diffraction data for (xantphos)(COD)RhCl were collected on a Bruker APEX DUO 3-circle platform diffractometer equipped with an APEX II CCD detector using Cu K_{α} radiation (multi-layer mirror monochromator) from a microfocus tube. Crystals of (xantphos)(COD)RhCl were mounted on a cryoloop under Paratone-N oil, and data were collected at 100(2) K using an Oxford Cryosystems Cryostream 700 apparatus. The frames were integrated using the SAINT+ algorithm to give the hkl files corrected for Lp/decay.¹ The absorption correction was performed using the SADABS program.² The structures were solved by intrinsic phasing/direct methods/Patterson method and refined on F2 using the Bruker SHELXTL Software Package.³⁻⁶ All hydrogen atom positions were idealized, and rode on the atom of attachment.

2. Synthesis of (xantphos)RhCl

Analogous to prior literature methods, synthesis of (xantphos)RhCl.⁷⁻⁹ In a nitrogen-filled glovebox, [Rh(COD)Cl]₂ (COD= cyclooctadiene, 1 equiv.) and 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos, 2 equiv.) were added into a 20 mL vial that was charged with a stir bar. 10 mL of THF was subsequently added, yielding a transparent, dark red-orange solution. This mixture was stirred at room temperature for 48 h, whereupon the volatiles were removed *in vacuo*, leaving a dark orange powder. The powder was washed twice with pentanes and dried again under reduced pressure. The isolated solid was characterized by ¹H and ³¹P NMR spectroscopy shown in Figures S1 and S2 below, where COD was still present. ¹H NMR (400 MHz, C₆D₆) δ 8.34 – 8.20 (s, 2H), 7.44 – 7.29 (s, 4H), 7.13 – 7.05 (m, 2H), 7.01 – 6.94 (m, 2H), 6.88 (dd, *J* = 9.3, 6.0 Hz, 4H), 4.19 – 4.04 (s, 2H), **1.85 – 1.67 (s, 3H) (pentanes)**, 1.42 – 1.30 (s, 6H), 1.05 (s, 2H), **0.93 – 0.80 (m, 3H) (pentanes)**. ³¹P NMR (400 MHz, C₆D₆) δ 0.21 – 0.49 (d, *J* = 92.3). Crystals of (xantphos)(COD)RhCl, suitable for X-ray diffraction analysis, were grown from a hot C₆D₆ solution that was allowed to slowly cool to room temperature.

PVC dechlorination reactions with the above-described isolated complex were found to be comparable to that of reactions in which [Rh(COD)Cl]₂ and Xantphos were added directly to the reaction mixture. Therefore, all catalytic reactions were done with in situ generation of the catalyst.

Fig. S1 ¹H NMR spectrum of (xantphos)(COD)RhCl complex in C₆D₆.

Fig. S2 ${}^{31}P{}^{1}H$ NMR spectrum of (xantphos)(COD)RhCl complex in C₆D₆.

Fig. S3 Thermal ellipsoid plot of $2[(xantphos)(COD)RhCl] \cdot THF \cdot C_6D_6$, drawn at the 50% probability level. Hydrogen atoms and solvates are omitted for clarity, while only one of two molecules in the asymmetric unit shown. Selected bond distances (Å) and angles (°): Rh1-Cl1 = 2.3993(5); Rh1-P3 = 2.4054(5); Rh1-P4 = 2.5328(5); P3-Rh1-P4 = 104.644(16).

	2[(xantphos)(COD)RhCl]·THF·C6D6
Formula	$C_{104}H_{96}D_6Cl_2O_3P_4Rh_2$
Crystal Habit, Color	Plate, Orange
Crystal Size (mm)	$0.15 \times 0.15 \times 0.05$
MW (g/mol)	1806.49
crystal system	triclinic
space group	P -1
a (Å)	11.4014(5)
b (Å)	16.6771(7)
c (Å)	22.4823(9)
α (°)	99.153(2)
β (°)	96.453(2)
γ (°)	91.012(2)
$V(Å^3)$	4190.9(3)
Z	2
T (K)	100(2)
λ (Å)	1.54178
GOF	1.048
Density (calcd) (Mg/m ³)	1.432
Absorption coefficient	4.912
(mm ⁻¹)	
Fooo	1868
Total no Reflections	93826
Unique Reflections	15940
Final R indices*	$R_1 = 0.0276$
	$wR_2 = 0.0697$
Largest Diff. peak and hole	0.992, -0.737
$(e^{-} \tilde{A}^{-3})$	
* $E_{or}[I > 2\sigma(I)]$	

Table S1 Crystallographic details for 2[(xantphos)(COD)RhCl]·THF·C₆D₆

* For $[I > 2\sigma(I)]$

3. General Procedures for PVC Dechlorination Reactions

In a glovebox, [(COD)RhCl]₂ and xanthphos in a 1:2 molar ratio, poly(vinyl chloride) (PVC), hydride source (NaH, NaHCO₂ or Et₃SiH), and solvent (5 mL, DMA or THF) were charged into a vial equipped with a Teflon-coated cap. The vial was sealed, secured with electrical tape, brought out of the glovebox, and placed inside a preheated oil bath for the desired time. The vial was then cooled to room temperature and the mixture quenched with 5 mL of isopropanol, followed by 5 mL water, which resulted in deposition of a dark brown precipitate. The solid was allowed to settle, and the supernatant was pipette away. The isolated polymer was then dried under reduced pressure at 120 °C for 2 h.

In a few cases, the mother liquor was evaporated to dryness, and the residues were weighed and characterized by ¹H NMR in THF in order to identify if residual PVC was remaining. The scaled-up reaction (Table S2, entry 2c") is conducted in a 100 mL pressure flask with Teflon screw-top lid and done with all reagents and solvent at a 5x scale.

4. Optimization of Reaction Conditions

The tables below describe the different reaction conditions varied for this study. The characterization of the products from these reactions that were not shown in the main text are shown in the sections below.

Н	Entry ^a	Cat. Loading	Equiv. of H	Solvent ^b	Time
Source		mol% (mmol)	source (mmol)		
	1a	1 (0.02)	5 (10.5)	THF	2 d
Et ₃ SiH	1a'	1 (0.02)	5 (10.5)	THF	2 d
	1b	5 (0.08)	5 (8.0)	THF	2 d
	1c	1 (0.02)	5 (10.5)	DMA	4 d
	1d	5 (0.08)	1 (1.6)	DMA	2 h
	1d'	5 (0.08)	1 (1.6)	DMA	2 h
	2a	1 (0.02)	2 (4.2)	THF	2 d
	2b	5 (0.08)	2 (3.2)	THF	1 d
NaHCO ₂	2c	5 (0.08)	2 (3.2)	THF	2 d
	2c'	5 (0.08)	2 (3.2)	THF	2 d
	2c"°	5 (0.08)	2 (3.2)	THF	2 d
	2d	5 (0.08)	2 (3.2)	DMA	2 d
	2e	5 (0.08)	1 (1.6)	DMA	2 h
	2e'	5 (0.08)	1 (1.6)	DMA	2 h
	3a	1 (0.02)	1 (2.1)	THF	2 d
NaH	3b	1 (0.02)	1 (2.1)	DMA	2 d
	3c	5 (0.08)	1 (1.6)	THF	2 h
	3d	5 (0.08)	1 (1.6)	DMA	2 h
	3d'	5 (0.08)	1 (1.6)	DMA	2 h

Table S2. Optimizations of catalytic conditions for each hydride source.

^{*a*}Repeat experiments are labelled with an apostrophe. ^{*b*}In all cases with 5 mol% catalyst loading, 5 mL solvent was used for 1.6 mmol PVC (102 mg). In cases with 1 mol% catalyst loading, 5 mL solvent was used for 2.1 mmol PVC (127 mg), which allowed for at least 5 mg of Rh precursor to be weighed for the reaction. Reactions were run at 110 °C. ^{*c*}This reaction was done at 5 times the scale of 2c and 2c', with all ratios the same. In this case 25 mL THF was used for 8.2 mmol PVC (510 mg).

H Source	Entry ^a	Cat. Loading	Equiv. of H	Solvent
		mol% (mmol)	source (mmol)	
None	la	-	-	THF
	1b	-	-	DMA
	1c	5 (0.08)	-	THF
	1d	5 (0.08)	-	DMA
Et ₃ SiH	2a	-	5 (10.5)	THF
	2b	-	5 (10.5)	DMA
Nauco	3a	-	2 (3.2)	THF
NaheO ₂	3b	-	2 (3.2)	DMA
NaH	4a	-	1 (1.6)	DMA

Table S3. Control reactions to understand the reactivity of solvent and hydride sources.

"In cases not using Et₃SiH, 5 mL solvent was used for 1.6 mmol PVC (102 mg). In cases with

Et₃SiH, 5 mL solvent was used for 2.1 mmol PVC (127 mg). All reactions were run for 2 d at 110

°C.

5. Weights

Unfortunately, the catalyst appears to remain in the polymer product, which prevents bulk characterization from showing quantitative evidence for exact selectivity between HDC and DHC for each H-source. We weighed the polymer product and the residues from the mother liquor. In this case, we see the recovered polymer for the sodium formate reaction is close to what is expected for PE formation. The slightly increased mass can be attributed to residual catalyst remaining in the polymer. However, NaH reactions show a similar amount of byproduct in the mother liquor (~200 mg) but a much larger mass in the polymer product. Along with residual catalyst, we hypothesize this could be due to oxidation of the alkenes generated from DHC.

Table S4. Following the mass recovery of reactions for evidence of side reactions.

H Source	Entry ^a	Total Rxn	Polymer Product	Mother Liquor	Mass % diff ^b
		Mass (g) ^b	Mass (g)	Mass (g)	
NaHCO ₂	2c'	0.390	0.054	0.206	53
NaH	3d'	0.208	0.126	0.229	123
^a Entry from ^a	Table S2.	^b Starting PVC	C weight was 102 mg	g. ^c Polymer produc	t weight/PVC starting
weight x 100	. Full con	version from	PVC to PE should se	e a 45% mass diffe	erence.

To ensure there was no remaining PVC in the mother liquor, we evaporated the mother liquor from the NaHCO₂ reaction (**Table S2**, entry 2c') to dryness and characterized the residuals by ATR-IR.

Fig. S4 IR spectra of low molecular weight PVC (CAS: 9002-86-2, Sigma Aldrich, bottom) and solids from mother liquor of Table S2, entry 2c' (top), showing no observable PVC remaining.

The residuals were then stirred in THF at 50 °C until dissolved, and then characterized by ¹H NMR spectroscopy. In addition, polymer products from Table S2, entries 2c' and 2e' were also stirred in THF at 50 °C for 2 hours and characterized by 1H NMR spectroscopy. In comparison to PVC starting material, no PVC could be identified in any of the samples (**Fig. S5**).

Fig. S5 ¹H NMR spectra in THF of low molecular weight PVC (CAS: 9002-86-2, Sigma Aldrich, bottom), solids from mother liquor of **Table S2**, entry 2c', and polymer products from **Table S2**, entries 2c' and 2e', showing no observable PVC remaining.

6. ATR-IR Spectroscopic Data

IR spectroscopy was used to identify promising reaction conditions for each H source as it is a quick and easy method to identify general characteristics of the final polymer product. The IR spectra of polyethylene and polyvinyl chloride are very different, with polyethylene showing three distinct peaks, most prominent thereof appears in the 2800-3000 cm⁻¹ region. The IR spectrum of poly(vinyl chloride) has a distinct C-Cl stretch between 600-650 cm⁻¹ that does not overlap with any polyethylene peaks, allowing us to track reaction progress by monitoring its intensity relative to those of polyethylene. While not quantitative, this method enables quick identification of conditions that yield PE-like polymers, as well as those that do not convert PVC very well. Once optimal conditions were identified, further characterization of the polymer product was carried out for holistic analysis of reaction outcomes. Repeat reactions are stacked to show the repeatability of the reaction outcomes.

Fig. S6 IR spectrum of low molecular weight PVC (CAS: 9002-86-2, Sigma Aldrich)

Fig. S7 IR spectrum of HDPE pellets (CAS: 9002-88-4, Sigma Aldrich)

Fig. S8 IR spectrum of Table S2, Entry 1a and Entry 1a' with the Et₃SiH H source.

Fig. S9 IR spectrum of Table S2, Entry 1b with the Et₃SiH H source.

Fig. S10 IR spectrum of Table S2, Entry 1c with the Et₃SiH H source.

Fig. S11 IR spectrum of Table S2, Entry 1d and Entry 1d' with the Et_3SiH H source.

Fig. S12 IR spectrum of Table S2, Entry 2a with the NaHCO₂ H source.

Fig. S13 IR spectrum of Table S2, Entry 2b with the NaHCO₂ H source.

Fig. S14 IR spectrum of Table S2, Entry 2c and 2c' with the NaHCO₂ H source.

Fig. S15 IR spectrum of Table S2, Entry 2c and 2c" with the NaHCO₂ H source, showing consistency of small and large scale reactions.

Fig. S16 IR spectrum of Table S2, Entry 2d with the NaHCO₂ H source.

Fig. S17 IR spectrum of Table S2, Entry 2e and 2e' with the NaHCO₂ H source.

Fig. S18 IR spectrum of Table S2, Entry 3a with the NaH H source.

Fig. S19 IR spectrum of Table S2, Entry 3b with the NaH H source.

Fig. S20 IR spectrum of Table S2, Entry 3c with the NaH H source.

Fig. S21 IR spectrum of Table S2, Entry 3d and 3d' with the NaH H source.

Fig. S22 IR spectrum of Table S3, Entry 1a control reaction.

Fig. S23 IR spectrum of Table S3, Entry 1b control reaction.

Fig. S24 IR spectrum of Table S3, Entry 1c control reaction.

Fig. S25 IR spectrum of Table S3, Entry 1d control reaction.

Fig. S26 IR spectrum of Table S3, Entry 2a control reaction.

Fig. S27 IR spectrum of Table S3, Entry 2b control reaction.

Fig. S28 IR spectrum of Table S3, Entry 3a control reaction.

Fig. S29 IR spectrum of Table S3, Entry 3b control reaction.

Fig. S30 IR spectrum of Table S3, Entry 4a control reaction.

7. NMR Spectroscopy

Fig. S31 ¹H NMR spectrum of the polymer product from Table S2, entry 1a with Et₃SiH.

Fig. S32 ¹H NMR spectrum of the polymer product from Table S2, entry 1d' with Et_3SiH . Peaks between 0.5-1 ppm are attributed to cyclopropane rings on the basis of previous NMR assignments.^{10,11}

Fig. S33 ¹H NMR spectrum of polymer product from Table S2, entry 2c' with NaHCO₂. Analogous NMR for Table S2, entry 2c can be found in the main manuscript.

Fig. S34 ¹H NMR spectrum of the polymer product from Table S2, entry 2c" with NaHCO₂.

Fig. S35 ${}^{13}C{}^{1}H$ NMR spectrum of the polymer product from Table S2, entry 2c" with NaHCO₂.

Fig. S36 ¹H NMR spectrum of the polymer product from Table S2, entry 2e' with NaHCO₂.

Fig. S37 ¹H NMR spectrum of polymer product from Table S2, entry 3b with NaH.

Fig. S38 ¹H NMR spectrum of polymer product from Table S2, entry 3d with NaH.

Fig. S39 ¹H NMR spectrum of polymer product from Table S2, entry 3d' with NaH.

Fig. S40 ¹H NMR spectrum of polymer product from the toy lizard commercial PVC plastic reaction.

Fig. S41 ¹H NMR spectrum of polymer product from colorless PVC commercial bag reaction.

8. Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDX)

Initial SEM and EDX measurements of the sodium formate reaction (Table S2, entry 2c) showing the highest HDC selectivity revealed consistent results across 12 spots on the sample. In one case, an impurity could easily be identified on the SEM image, with EDX revealing residual sodium formate as the likely impurity.

Fig. S42 SEM images of EDX sample locations for the product from the optimized reaction with NaHCO₂ (Table S2, entry 2c) . Spectrum numbers correspond to sample numbers in Table S6. below.

	Atomic %							
	С	0	F	Na	Si	Р	Cl	Rh
Max	92.96	5.11	0.31	0.44	0.97	1.2	1	0.79
Min	91.56	3.54	0.12	0.2	0.22	1.03	0.79	0.65
Average	92.33	4.06	_	0.33	0.48	1.1	0.92	0.7
Standard Deviation	0.48	0.45	_	0.08	0.25	0.05	0.07	0.05

Table S5. EDX data averaged over 12 sample locations and individual values for the product from the optimized reaction with NaHCO₂ (Table S2, entry 2c)

Table S6. EDX data for each sample location for the product from the optimized reaction with NaHCO₂ (Table S2, entry 2c)^a

Sample #	1	2	3	5	6	7	8	9	10	11	12	13
С	92.49	92.1	91.91	91.56	92.73	92.59	92.32	92.96	91.85	91.75	92.92	92.72
0	3.81	3.73	4.06	5.11	4.07	4.14	4.31	3.67	4.5	4.21	3.54	3.54
F	—	_	_	_	_	0.13	—	0.12	0.12	0.31	0.16	0.3
Na	0.3	0.25	0.32	0.2	0.23	0.23	0.42	0.39	0.44	0.38	0.36	0.38
Si	0.65	0.97	0.89	0.65	0.36	0.36	0.32	0.22	0.45	0.42	0.24	0.24
Р	1.11	1.17	1.11	1.04	1.09	1.07	1.04	1.05	1.03	1.2	1.13	1.12
Cl	0.9	0.97	0.95	0.79	0.84	0.79	0.94	0.95	0.94	1	0.95	0.96
Rh	0.73	0.79	0.76	0.66	0.67	0.69	0.65	0.65	0.66	0.72	0.71	0.73
Total	100	100	100	100	100	100	100	100	100	100	100	100

^{*a*}Sample 4 was taken of the white crystalline solid found in the polymer sample as shown in Fig. S33 above. There was excess Na and O present, showing that it was excess sodium formate from the reaction.

EDX measurements were done on the three duplicate reactions for each H source (Table S2, entries 1a', 2c' and 3d' for Et₃SiH, NaHCO₂ and NaH, respectively. Values for 9 locations across the sample were consistent for all three polymer products, therefore averages are compared in Table S7.

Electron Image 9 Samlple 3

Fig. S43 SEM image (top) and EDX spectrum (bottom) of the polymer product from the optimized reaction with Et₃SiH (Table S2, entry 1a').

Electron Image 3 SamIple 1

Fig. S44 SEM image (top) and EDX spectrum (bottom) of the polymer product from the optimized reaction with NaHCO₂ (Table S2, entry 2c').

Electron Image 7 Samlple 2

Fig. S45 SEM image (top) and EDX spectrum (bottom) of the polymer product from the optimized reaction with NaH (Table S2, entry 3d').

EDX	Et ₃ S	Et ₃ SiH ^a		NaHCO ₂ ^b		NaHCO ₂ ^{b'}		NaH ^c	
Element	Atomic	Weight	Atomic	Weight	Atomic	Weight	Atomic	Weight	
	%	%	%	%	%	%	%	%	
С	87.9	71.5	92.3	82.6	92.3	83.2	82.3	62.8	
		• •							
0	2.7	3.0	4.2	5.0	4.1	4.9	2.2	2.2	
F			0.3	0.4					
ľ	_	_	0.5	0.4	—	_	_	_	
Na	_	_	0.2	0.3	0.3	0.5	0.8	1.1	
Si	_	_	_	_	0.5	1.1	_	_	
Р	1.3	2.8	1.2	2.8	1.1	2.6	0.4	0.8	
S	1.0	2.3	0.6	1.4	—	—	0.4	0.7	
	()	147	0.2	0.0		2.4	10.7	20.1	
CI	6.2	14./	0.3	0.9	0.9	2.4	13.7	30.1	
Rh	0.8	5.8	0.8	6.5	0.7	5.4	0.3	2.2	

Table S7. EDX data comparison of polymer products with different H sources.

^{*a*} refers to product from reaction in Table S2, entry 1a'. ^{*b*} refers to product from reaction in Table S2, entry 2c. ^{*b*} refers to product from reaction in Table S2, entry 2c'. ^{*c*} refers to product from reaction in Table S2, entry 3d'.

9. Gel Permeation Chromatography

The GPC chromatogram of PVC before and after reaction with NaHCO₂ under optimized conditions was recorded. The GPC data indicate reasonable preservation of the dispersity of the starting PVC, but some reduction of its degree of polymerization. This could be due to chain scission events, or due to the varied hydrodynamic radius between PVC and PE, since the polymer molecular weights were calibrated against polystyrene standards. Therefore, we take the dispersity information to be most meaningful to indicate limited chain scission.

Chromatogram Plot

Fig. S46 GPC data for polymer product from optimized reaction with NaHCO₂ (Table S2, entry 2c")

Chromatogram Plot

Molecular Weight Averages

Peak	Mp (g/mol)	Mn (g/mol)	Mw (g/mol)	Mz (g/mol)	Mz+1 (g/mol)	Mv (g/mol)	PD
Peak 1	107513	67630	119152	181111	241277	172186	1.762

Fig. S47 GPC data for low molecular weight PVC (CAS: 9002-86-2, Sigma Aldrich)

10. Thermogravimetric Analysis (TGA)

TGA of the polymer products from sodium formate reactions (Table S2, entries 2c and 2c') showed much higher thermal stability than PVC starting material and reactions with Et₃SiH or NaH (Table S2, entries 1a' and 3d', respectively). The conditions with Et₃SiH and NaH also show two distinct stages of mass loss, which could be due to dechlorination degree or dehydrochlorination. These results suggest that the sodium formate reactions lead to the most polyethylene-like polymers.

Fig. S48 TGA of starting low molecular weight PVC and polymer products from selected samples: Table S2, entry 1a'; Table S2, entry 2c; Table S2, entry 2c'; Table S2, entry 3d'. aNaHCO₂ solid green trace shows Table S2, entry 2c', while the dashed trace shows Table S2, entry 2c.

11. Elemental Analysis, CHNS

Table S8. CHNS data of selected polymer products

EA Data	% C	% H
Et ₃ SiH (Table S2, entry 1a)	57.5	8.4
Et ₃ SiH (Table S2, entry 1a')	44.8	6.9
Et ₃ SiH (Table S2, entry 1d')	45.3	5.0
NaHCO ₂ (Table S2, entry 2c)	72.0	10.7
NaHCO ₂ (Table S2, entry 2c')	74.2	11.5
NaHCO ₂ (Table S2, entry 2c")	57.3	8.5
NaHCO ₂ (Table S2, entry 2e ²)	59.7	8.5
NaH (Table S2, entry 3b)	70.5	8.4
NaH (Table S2, entry 3d')	52.2	6.9

12. Computational Methods and Models

The computational procedure for calculating reaction intermediates and transition structures is identical to that reported in our previous work.¹² All calculations are carried out using Version 5.3 (and higher) of Q-Chem ab initio quantum chemistry software.¹³ Density functional theory (DFT) calculations with implicit solvation models are performed at the ωB97X-D/def2-SVP level of theory and the Karlsruhe def2-ECP effective core potential for heavy atoms.^{14,15} Identical to our prior study, monochloropropane is chosen as the model substrate and the POP-pincer bound Rh(I) complex with P atoms coordinated to two methyl groups (instead of phenyl) is chosen as the model catalyst. Turnover frequencies are calculated using the energetic span model.¹⁶

Role of solvent

Turnover frequencies (TOF) at 110°C for various solvents and salts are shown in Table S1.

Table S9. TOFs (h⁻¹) calculated at 110°C using the energetic span model and zero-point corrected electronic energies.

Salt	NaHCO2		NaH		SiHMe3	
Solvent	THF	DMA	THF	DMA	THF	DMA
TOF	5.84E-05	2.97E-04	2.53E-01	1.30E-01	2.53E-01	1.30E-01

13. References

- 1) SAINT+, 8.27B ed., Bruker AXS Madison, WI, 2011.
- 2) SADABS, 2012-1 ed., Bruker AXS Madison, WI, 2012.
- 3) G. M. Sheldrick, Acta Crystallogr A Found Crystallogr, 2008, 64, 112–122.
- 4) G. M. Sheldrick, Acta Crystallogr C Struct Chem, 2015, 71, 3–8.
- 5) G. M. Sheldrick, Acta Crystallogr A Found Crystallogr, 2015, 71, 3–8.
- 6) SHELXL, Vol. 2012-4, 2012-1 ed.
- 7) T. J. Morrow, J. R. Gipper, W. E. Christman, N. Arulsamy and E. B. Hulley, *Organometallics*, 2020, **39**, 2356–2364.
- 8) M. A. Esteruelas, M. Oliván and A. Vélez, Inorg. Chem., 2013, 52, 5339–5349.
- 9) M. C. Haibach, D. Y. Wang, T. J. Emge, K. Krogh-Jespersen and A. S. Goldman, *Chem. Sci.*, 2013, 4, 3683–3692.
- 10) R. E. Cais and C. P. Spencer, European Polymer Journal, 1982, 18, 189–198.
- 11) D. T. Longone and A. H. Miller, Chem. Commun. (London), 1967, 447.
- 12) S. Bac, M. E. Fieser and S. Mallikarjun Sharada, *Phys. Chem. Chem. Phys.*, 2022, 24, 3518–3522.
- 13) E. Epifanovsky, A. T. B. Gilbert, X. Feng, J. Lee, Y. Mao, N. Mardirossian, P. Pokhilko, A. F. White, M. P. Coons, A. L. Dempwolff, Z. Gan, D. Hait, P. R. Horn, L. D. Jacobson, I. Kaliman, J. Kussmann, A. W. Lange, K. U. Lao, D. S. Levine, J. Liu, S. C. McKenzie, A. F. Morrison, K. D. Nanda, F. Plasser, D. R. Rehn, M. L. Vidal, Z.-Q. You, Y. Zhu, B. Alam, B. J. Albrecht, A. Aldossary, E. Alguire, J. H. Andersen, V. Athavale, D. Barton, K. Begam, A. Behn, N. Bellonzi, Y. A. Bernard, E. J. Berquist, H. G. A. Burton, A. Carreras, K. Carter-Fenk, R. Chakraborty, A. D. Chien, K. D. Closser, V. Cofer-Shabica, S. Dasgupta, M. de Wergifosse, J. Deng, M. Diedenhofen, H. Do, S. Ehlert, P.-T. Fang, S. Fatehi, Q. Feng, T. Friedhoff, J. Gayvert, O. Ge, G. Gidofalvi, M. Goldey, J. Gomes, C. E. González-Espinoza, S. Gulania, A. O. Gunina, M. W. D. Hanson-Heine, P. H. P. Harbach, A. Hauser, M. F. Herbst, M. Hernández Vera, M. Hodecker, Z. C. Holden, S. Houck, X. Huang, K. Hui, B. C. Huynh, M. Ivanov, A. Jász, H. Ji, H. Jiang, B. Kaduk, S. Kähler, K. Khistyaev, J. Kim, G. Kis, P. Klunzinger, Z. Koczor-Benda, J. H. Koh, D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter, K. Kue, A. Kunitsa, T. Kus, I. Ladjánszki, A. Landau, K. V. Lawler, D. Lefrancois, S. Lehtola, R. R. Li, Y.-P. Li, J. Liang, M. Liebenthal, H.-H. Lin, Y.-S. Lin, F. Liu, K.-Y. Liu, M. Loipersberger, A. Luenser, A. Manjanath, P. Manohar, E. Mansoor, S. F. Manzer, S.-P. Mao, A. V. Marenich, T. Markovich, S. Mason, S. A. Maurer, P. F. McLaughlin, M. F. S. J. Menger, J.-M. Mewes, S. A. Mewes, P. Morgante, J. W. Mullinax, K. J. Oosterbaan, G. Paran, A. C. Paul, S. K. Paul, F. Pavošević, Z. Pei, S. Prager, E. I. Proynov, A. Rák, E. Ramos-Cordoba, B. Rana, A. E. Rask, A. Rettig, R. M. Richard, F. Rob, E. Rossomme, T. Scheele, M. Scheurer, M. Schneider, N. Sergueev, S. M. Sharada, W. Skomorowski, D. W. Small, C. J. Stein, Y.-C. Su, E. J. Sundstrom, Z. Tao, J. Thirman, G. J. Tornai, T. Tsuchimochi, N. M. Tubman, S. P. Veccham, O. Vydrov, J. Wenzel, J. Witte, A. Yamada, K. Yao, S. Yeganeh, S. R. Yost, A. Zech, I. Y. Zhang, X. Zhang, Y. Zhang, D. Zuev, A. Aspuru-Guzik, A. T. Bell, N. A. Besley, K. B. Bravaya, B. R. Brooks, D. Casanova, J.-D. Chai, S. Coriani, C. J. Cramer, G. Cserey, A. E. DePrince, R. A. DiStasio, A. Dreuw, B. D. Dunietz, T. R. Furlani, W. A. Goddard, S. Hammes-Schiffer, T. Head-Gordon, W. J. Hehre, C.-P. Hsu, T.-C. Jagau, Y. Jung, A. Klamt, J. Kong, D. S. Lambrecht, W. Liang, N. J. Mayhall, C. W. McCurdy, J. B. Neaton, C. Ochsenfeld, J. A. Parkhill, R. Peverati, V. A. Rassolov, Y. Shao, L. V. Slipchenko, T. Stauch, R. P. Steele, J. E. Subotnik, A. J. W. Thom, A. Tkatchenko, D. G. Truhlar, T. Van Voorhis, T. A. Wesolowski,

- K. B. Whaley, H. L. Woodcock, P. M. Zimmerman, S. Faraji, P. M. W. Gill, M. Head-Gordon,
- J. M. Herbert and A. I. Krylov, J. Chem. Phys., 2021, 155, 084801.
- 14) J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615.
- 15) J.-D. Chai and M. Head-Gordon, The Journal of Chemical Physics, 2008, 128, 084106.
- 16) S. Kozuch and S. Shaik, Acc. Chem. Res., 2011, 44, 101-110.