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Synthesis of 1D-CN

The 1D-CN sample was prepared by the thermal polycondensation of melamine: 

5.0 g melamine was placed into a covered crucible, and then heated at 550 ℃ for 4h 

with a rate of 2.5 ℃·min-1 in a muffled furnace. After cooled to room temperature, the 

product was ground in a mortar and collected.

Synthesis of PTI

PTI was prepared by a slight modification of the procedure reported in the previous 

literature [S1]: 2.0 g melamine and 20 g LiCl/KCl salts (45/55 wt %, m.p. = 352 ℃) 

were thoroughly ground. The resulting mixture was transferred into a porcelain crucible 

and heated in a muffle furnace at 550 ℃ for 4 h. The heating rate was 2.5 ℃·min-1. 

After cooling to room temperature, the obtained product was washed with boiling water 

and then ethanol several times, collected by filtration and dried at 60 ℃.

Synthesis of PC-CN

The PC-CN sample was prepared by a solid chloride salts assisted 

polycondensation method: 2.0 g melamine and 20 g NaCl/KCl salts (71/29 wt %, m.p. 

= 652 ℃) were thoroughly ground. The resulting mixture was transferred into a 

porcelain crucible and heated in a muffle furnace at 550 ℃ for 4 h. The heating rate 

was 2.5 ℃·min-1. After cooling to room temperature, the obtained product was washed 

with boiling water and then ethanol several times, collected by filtration and dried at 60 

℃.

Acid dissolution experiments

The 1D-CN/H2SO4 solution was obtained by a modification of the reported 

procedure [S2]: The mixture of 200 mg 1D-CN and 2.00 mL H2SO4 was stirred at 100 

℃ for 1 h. Then the mixture gradually turned into a clear pale yellow solution. The PTI 

and PC-CN samples were treated with H2SO4 under the same condition.

Photocatalytic experiments

The photocatalytic hydrogen evolution reactions were carried out in a top-

irradiation reaction vessel connected to a glass closed system. Typically, 50 mg 

prepared photocatalyst was dispersed in the mixture of 90 mL deionized water and 10 

mL triethanolamine (TEOA). Then, 3 wt% H2PtCl6 (based on Pt) as the precursor of 



cocatalyst Pt was added. After degassed under vacuum to completely remove air, the 

reaction solution was irradiated by a 300 W Xe-lamp with a cut-off filter (λ > 420 nm). 

During the irradiation, the reaction temperature was maintained at 15 ℃ by cycle water. 

The generated H2 was analyzed by an on-line gas chromatography (GC-7900, thermal 

conductive detector, 5 Å molecular sieve column), using Ar as the carrier. For the 

photocatalytic stability test, additional 5 mL TEOA was added to the system after three 

cycling tests.

The apparent quantum efficiency (AQE) for H2 evolution was measured by 

replacing the cut-off filter with corresponding band-pass filter. The AQE is calculated 

from the following equation:

AQE =  
2 ×  number of evolved 𝐻2  molecules

the number of incident photos
 ×  100%

Characterization

X-ray diffraction (XRD) patterns were obtained from a PW3040/60 X’pert PRO 

X-ray diffractometer (PANalytical) using CuKα1 radiation (λ = 1.5406 Å), ranging 

from 5 to 80° with a scanning speed of 4° min-1. Elemental analysis (EA) was performed 

on a vario MICRO cube element analyzer. Field emission scanning electron microscopy 

(FESEM) and energy-dispersive spectroscopy (EDS) mapping images were recorded 

on a ZEISS Sigma 500 microscope equipped with an Oxford Instruments X-MaxN 50 

energy-dispersive spectrometer. Transmission electron microscopy (TEM) and high-

resolution TEM (HRTEM) characterization was performed on a JEM-2100 instrument 

at an acceleration voltage of 200 kV. Fourier transform infrared (FT-IR) spectra were 

measured on a Thermo Nicolet iS10 spectrometer. UV-vis diffuse reflection spectra 

(DRS) were recorded on a Shimadzu UV-2600 spectrophotometer using BaSO4 as the 

reference. X-ray photoelectron spectroscopy (XPS) measurements were conducted on 

a Thermo Fisher ESCALAB Xi+ spectrometer with monochromic Al Kα X-ray. 

Steady-state and time-resolved photoluminescence (PL) spectra were measured on a 

FluoroMax+ spectrophotometer (HORIBA).

Photoelectrochemical measurements

All the photoelectrochemical measurements (Mott-Schottky plots, 



electrochemical impedance spectra (EIS) and photocurrent) were performed by CHI-

760E workstation (CH Instruments) in a standard three-electrode system using the 

prepared samples as the working electrodes, Ag/AgCl electrode as a reference 

electrode, and a Pt sheet as the counter electrode. The electrolyte was 0.2 M Na2SO4 

aqueous solution. The working electrodes were prepared as follows: ~5 mg sample was 

dispersed in 0.02 wt% Nafion solution to afford a suspension. The suspension was 

sonicated for 1 h and then spread on to a 1.0 cm × 1.0 cm exposed ITO glass, dried in 

the air. The photocurrent was measured under -0.3 V bias voltage and the light source 

was a 300 W Xe-lamp with a cut-off filter (λ > 420 nm).

Fig. S1. Illustration of the synthetic procedures of 1D-CN (traditional graphitic CN), 

PTI, and PC-CN.



Fig. S2. Proposed formation mechanism of covalent bonds between different chains in 

PC-CN.

Table S1 Elemental compositions of PTI, 1D-CN, and PC-CN.

Sample C [wt %] N [wt %] H [wt %] C/N molar ration

PTI 27.26 46.02 2.50 0.691

1D-CN 34.34 57.54 1.96 0.696

PC-CN 27.04 43.54 2.17 0.724



Table S2 The fitting parameters of the time-resolved transient PL decay curves for PTI, 

1D-CN, and PC-CN.

Sample A1 / % τ1 / ns A2 / % τ2 / ns τavg. / ns

PTI 10.0 28.6 90.0 1.55 1.71

1D-CN 57.5 11.1 42.5 1.74 3.37

PC-CN 42.5 12.2 57.5 1.96 3.06

The emission decay curves of the samples were fitted by biexponential kinetics function 

(equation 1). The average PL lifetime (τavg) was deduced by the following equation 2：

I(t) = A1exp(-t/τ1) + A2exp(-t/τ2)         (1)

                (2)

Fig. S3. FESEM images of (a) PTI, (b) 1D-CN, and (c) PC-CN. (d) Elemental 

mappings, (e) TEM, and (f) HRTEM images of PC-CN.



Fig. S4. Proposed structures of (a) PTI, (b) 1D-CN, and (c) PC-CN. The amino and 

imide groups are marked green. It is obvious that due to the cross-linking, there are 

fewer amino/imide groups in PC-CN.

Fig. S5. XPS (a) K 2p and (b) Cl 2p spectra of PTI and PC-CN.



Table S3. Peak area ratios of C-defects and amino/imide (N-Hx) groups in high 

resolution XPS spectra of the as-prepared PTI, 1D-CN and PC-CN.

Sample SC–defects/Stotal (%) SN-Hx/Stotal (%)

PTI 7.26 28.6

1D-CN — 21.8

PC-CN 16.1 9.03

Fig. S6. N2 adsorption and desorption isotherm curves of the as-prepared PTI, 1D-CN 

and PC-CN.



Fig. S7. Proposed mechanism for the photocatalytic H2 production of 1D-CN and PC-

CN. The 1D molecular structure of 1D-CN blocks the charge transport between 

different chains, while the cross-linking in PC-CN makes the charge transport between 

different chains possible.

Table S4 Comparison of AQE at 420 nm between this work and previous studies.

molten salt Method AQE Ref.

NaCl/KCl post-calcination in molten salt 32a S3

LiCl/KCl post-calcination in molten salt 26.7 S4

LiCl/KCl post-calcination in molten salt 15b S5

KCl one-step calcination in molten salt 11.4 S6

LiCl/KCl post-calcination in molten salt & 

sonication–centrifugation

8.57c S7

LiCl/KCl post-calcination in molten salt 6.8 c S8

NaCl/KCl one-step calcination in molten salt 24.8 this work

Note: The photocatalytic H2 evolution reactions were carried out in the presence of 

triethanolamine as the sacrificial agent and Pt as the co-catalyst. 
a the super-high AQE of 60 % has been achieved in “sea water” (with additional 3 % 

NaCl). b the AQE of 57 % has been achieved in “sea water” (with additional 3 % NaCl). 
c Using MeOH as the sacrificial.
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