Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Material (ESI)

Supplemental information

High-Efficiency Organic Solar Cells Processed from Real Green Solvent

Shuting Pang, Zhili Chen, Junyu Li, Yuting Chen, Zhitian Liu, Hongbin Wu, Chunhui Duan,* Fei Huang, and Yong Cao

1. Polymer synthesis

General information: The synthesis route of the polymer PBNT-TzTz is shown in Scheme S1. The monomers BNT and TzTz were synthesized according to the procedures reported in literatures.^{1,2,3} Pd₂(dba)₃ was purchased from Strem. The other chemicals and solvents were purchased from commercial sources (Innochem, Energy Chemical, or Acros) and used as received unless otherwise indicated. Y6, Y6-BO and PTQ10 were purchased from eFlexPV Limited (China). D18 was purchased from Derthon OPV Co Ltd. L8-BO was purchased from Hyper Inc.

Scheme S1. The synthetic route of PBNT-TzTz.

Polymerization of PBNT-TzTz: In the degassed solution containing the monomer BNT (210.1 mg, 0.2 mmol) and TzTz (171.3 mg, 0.2 mmol) in anhydrous *o*-xylene (3.6 ml) and *N*,*N*-dimethylformamide (0.4 ml), $Pd_2(dba)_3$ (3.7 mg, 0.004 mmol) and $P(o-tol)_3$ (9.7 mg, 0.032 mmol) were added under nitrogen protection. Then the mixture was stirred at 110 °C for 48 hours. After that, 2-(tributylstannyl)thiophene and 2-bromothiophene were sequentially added

to the reaction with 2 hours interval. After cooling to room temperature, the reaction mixture was precipitated in methanol and filtered through a Soxhlet thimble. The precipitation was subjected to Soxhlet extraction with methanol, acetone, hexane, dichloromethane, chloroform, and chlorobenzene sequentially under argon protection. The chlorobenzene fraction was concentrated under reduced pressure and precipitated in methanol to obtain the polymer PBNT-TzTz (Yield = 93%). $M_n = 42$ kDa, $D_M = 2.4$.

2. Measurements and characterization

Gel permeation chromatography (GPC): The molecular weight of the polymer was determined by Agilent Technologies PL-GPC 220 high-temperature chromatography in 1,2,4-trichlorobenzene at 140 °C using a calibration curve of polystyrene standards.

Thermogravimetric analysis (TGA): The TGA measurement was carried out with a NETZSCH (TG209F3) apparatus at a heating rate of 20 °C min⁻¹ under nitrogen atmosphere.

Differential scanning calorimetry (DSC): The DSC measurement was performed on a NETZSCH (DSC200F3) apparatus with a heating/cooling rate of 10/20 °C min⁻¹ for the first cycle and 10/40 min⁻¹ for the second cycle under nitrogen atmosphere.

Measurements of dielectric constant: The dielectric constants of the materials were determined by the capacitance–voltage (*C*–*V*) measurements with a device structure of ITO/PEDOT:PSS/polymer film (150 nm)/Al. First, PEDOT:PSS (CLEVIOSTM P VP AI 4083) was spin-coated on top of a cleaned ITO and annealed in air at 150 °C for 15 minutes to form a \approx 40 nm layer. Subsequently, the polymer film with the thickness of 150 nm was formed by spin-coating the solution of PBNT-TzTz or PBDT-TzTz in chloroform on top of the PEDOT:PSS layer. After that, a 100 nm Al layer was deposited by thermal evaporation through a shadow mask in a vacuum chamber at a pressure of 5×10^{-6} Torr. The *C*–*V* measurements of the molecules were performed using a HP 4192A LCR meter by sweeping the voltage from – 30 to 10 V at room temperature, with a ramping rate of 0.5 V s⁻¹ and 30 mV of oscillator levels. The measurements were performed under the frequency from 1×10^{3} to 1×10^{6} Hz. The relative

dielectric constants (ε_r) were calculated from the equation of $\varepsilon_r = Cd/\varepsilon_0 A$, where *C* is the capacitance, *d* is the thickness of the polymer film, ε_0 is the permittivity of free space, A is the device area (0.0516 cm²).

UV-vis-NIR absorption spectra: UV-vis-NIR absorption spectra of the polymers and nonfullerene acceptor in chlorobenzene solutions and as thin films were recorded on a SHIMADZU UV-3600 spectrophotometer. The concentration of diluted solution was 1.0×10^{-5} M, and the films were prepared by spin coating their solutions on glass substrates.

Square wave voltammetry (SWV): SWV measurements were conducted on a CHI600D electrochemical workstation in a solution of tetrabutylammonium hexafluorophosphate (Bu₄NPF₆, 0.1 M) in acetonitrile at a scan rate of 50 mV s⁻¹. A platinum electrode coated with the sample film, a platinum wire, and an Ag/AgCl electrode were used as working electrode, counter electrode, and reference electrode, respectively. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels were calculated by $E_{\text{HOMO/LUMO}}$ =-($E_{\text{ox/red}}$ +5.13- $E_{\text{Fc/Fc}}$ +).^{4,5}

Density functional theory (DFT): The geometry was fully optimized at the B3LYP/ $6-31+G^*$ level of theory by the absence of imaginary frequencies. The long alkyl chains were replaced by methyl groups. All calculations were carried out with the Gaussian 09 software.⁶

Steady-state photoluminescence (PL) quenching measurements: The PL quenching measurements were conducted on a Shimadzu RF-6000 spectrometer.

Atomic force microscopy (AFM): The AFM images were obtained by Bruker Multimode 8 Microscope AFM in tapping mode.

Transmission electron microscopy (TEM): The TEM images were collected from JEM-2100F transmission electron microscope operated at 200 kV.

Grazing incidence wide-angle X-ray scattering (GIWAXS): 2D-GIWAXS experiments were carried out on a GANESHA 300XL+ system from JJ X-ray. The instrument is equipped with a Pilatus 300K detector, with pixel size of $172 \times 172 \mu m$. The X-ray source is a Genix 3D

Microfocus Sealed Tube X-Ray Cu-source with integrated Monochromator (multilayer optic "3D version" optimized for SAXS) (30 W). The wavelength used is $\lambda = 1.5418$ Å. The detector moves in a vacuum chamber with sample-to-detector distance varied between 0.115 m and 1.47 m depending on the configuration used, as calibrated using silver behenate (d001 = 58.380 Å). The minimized background scattering plus high-performance detector allows for a detectable q-range varying from 3×10^{-3} to 3 Å^{-1} (0.2 to 210 nm). The sample was placed vertically on the goniometer and tilted to a glancing angle of 0.2° with respect to the incoming beam. A small beam was used to get a better resolution. The primary slits have a size of 0.3 (horizontal) × 0.5 mm (vertical), and the guard slits have a size of 0.1 (horizontal) × 0.3 (horizontal) mm. The accumulation time was 2 hours for each measurement. In-plane and out-of-plane line-cut profiles were obtained using SAXSGUI program.

3. Device fabrication and characterization

The fabrication of solar cells: The substrates with indium tin oxide (ITO) were cleaned by detergent, sonicated in deionized water and isopropanol, subsequently. After that, the clean substrates were dried in blast oven at 70 °C. The ITO substrates were subjected to oxygen plasma for 5 minutes. An aqueous solution of PEDOT:PSS (CLEVIOSTM P VP AI 4083) was spin-casted onto the ITO surface at 3000 rpm for 30 seconds, followed by drying at 150 °C for 15 minutes in air. The substrates were then transferred into a nitrogen-filled glove box. The active layer was fully optimized in terms of D/A ratio, spin-coating rate, solvent composition, and thermal annealing. For the optimal PBNT-TzTz:Y6-BO device, the polymer and Y6-BO were dissolved in a mixed solution of anisole and LM at the donor concentration of 7 mg mL⁻¹. The active layers were spin-coated on substrates at 2500 rpm to give a thickness of 100 nm. Afterwards, an electron transport layer of PNDIT-F3N was spin-coated from a solution (0.5 mg ml⁻¹) at a speed of 2000 rpm for 30 seconds. Finally, a 100 nm Ag was deposited by thermal evaporation in a vacuum chamber at a pressure of 5×10⁻⁶ Torr with a shadow mask.

Photovoltaic performance: The photovoltaic performance of the solar cells were measured under AM1.5G irradiation (100 mW cm⁻²) derived from a class solar simulator (Enlitech, Taiwan), which was calibrated by a China General Certification Center-certified reference single-crystal silicon cell (Enlitech). The current density–voltage (J-V) curves were recorded with a Keithley 2400 source meter.

External quantum efficiencies (EQEs): The EQE spectra were measured by a QE system (QE-R3011, Enlitech) with the light intensity calibrated by a standard single-crystal silicon photovoltaic cell (Enlitech).

Light-intensity dependence: The light-intensity dependence measurements were carried out in illumination with a photon flux between 10–100 mW cm⁻², which was calibrated by a standard single-crystal silicon solar cell (Enlitech). The current density and voltage were recorded with a Keithley 2400 source meter.

Fabrication and characterization of single-carrier devices: Single-carrier devices were fabricated to measure hole and electron mobility by using the space-charge-limited current (SCLC) method. The device structures of the hole-only and electron-only devices are ITO/PEDOT:PSS (40 nm)/active layer (100 nm)/MoO_x (10 nm)/Ag (100 nm) and ITO/ZnO (40 nm)/active layer (100 nm)/PFN-Br (10 nm)/Ag (100 nm), respectively. The dark current densities of the devices were measured by applying a voltage between 0 and 5 V using a computer-controlled Keithley 2400 source meter under a nitrogen atmosphere. The data were analyzed according to the Mott–Gurney law that considers a Poole–Frenkel-type dependence

of mobility on the electric field, given by $J = \overline{8}_{\varepsilon_r \varepsilon_0 \mu_0} \exp(0.89\gamma \sqrt{V/d})$, where ε_0 is the permittivity of free space, ε_r is the dielectric constant which is assumed to be 3 for organic semiconductors, μ_0 is the zero-field mobility, V is the voltage drop across the device, d is the film thickness of the active layer, and γ is a parameter that describes the strength of the field-dependence effect. The applied voltage is used without correcting for series resistance or built-

in voltage, which offers the best fitting of the experimental data following the protocol reported in literature.⁷ The hole and electron mobilities are extracted with the fit parameters at an electric field (*E*) of 1×10^5 V cm⁻¹ by the Murgatroyd equation $\mu = \mu_0 \exp(\gamma \sqrt{E})$.

Transient Optoelectronic Measurements: For TPV measurements, the solar cells were first illuminated by a halogen lamp with 100 mW cm⁻² illumination to reach working condition. A set of neutral optical filter were utilized to produce 0.01-1 sun illumination. Perturbed charge carriers were then generated by a 532 nm laser pulse from a Nd:YAG pulse laser (Q-smart 100 of Quantel). The TPV signals were monitored by a Tektronix DPO4014 oscilloscope with high input impedance option to achieve open-circuit condition. For TPC measurements, the solar cells were in series with a 50 Ω load resistor. The voltage transient across the resistor was recorded by the oscilloscope under the same illumination and laser perturbation. The transient is translated into a current transient by Ohm's law.

4. Additional figures and tables

Fig. S1. Ranking of the solvents investigated for OSCs processing based on the overall greenness criterion. Reproduced with permission.⁸ Copyright 2020, the Royal Society of Chemistry.

Table S1. CHEM21 solvent guide of common solvents. Reproduced with permission.9Copyright 2016, the Royal Society of Chemistry.

Family	Solvent	BP (°C)	FP (°C)	Worst H3xx ^a	H4xx	Safety score	Health score	Env. score	Ranking by default	Ranking after discussion ^b
Water	Water	100	na	None	None	1	1	1	Recommended	Recommende
Alcohols	MeOH	65	11	H301	None	4	7	5	Problematic	Recommende
	EtOH	78	13	H319	None	4	3	3	Recommended	Recommende
	i-PrOH	82	12	H319	None	4	3	3	Recommended	Recommende
	n-BuOH	118	29	H318	None	3	4	3	Recommended	Recommende
	t-BuOH ^c	82	11	H319	None	4	3	3	Recommended	Recommende
	Benzyl alcohol	206	101	H302	None	1	2	7	Problematic	Problematic
	Ethylene glycol	198	116	H302	None	1	2	5	Recommended	Recommende
Ketones	Acetone	56	-18	H319	None	5	3	5	Problematic	Recommende
	MEK	80	-6	H319	None	5	3	3	Recommended	Recommende
	MIBK	117	13	H319	None	4	2	3	Recommended	Recommende
	Cyclohexanone	156	43	H332	None	3	2	5	Recommended	Problematic
sters	Methyl acetate	57	-10	H302	None	5	3	5	Problematic	Problematic
	Ethyl acetate	77	-4	H319	None	5	3	3	Recommended	Recommende
	i-PrOAc	89	2	H319	None	4	2	3	Recommended	Recommende
	n-BuOAc	126	22	H336	None	4	2	3	Recommended	Recommende
thers	Diethyl ether	34	-45	H302	None	10	3	7	Hazardous	HH
	Diisopropyl ether	69	-28	H336	None	9	3	5	Hazardous	Hazardous
	MTBE	55	-28	H315	None	8	3	5	Hazardous	Hazardous
	THF	66	-14	H351	None	6	7	5	Problematic	Problematic
	Me-THF	80	-11	H318	None	6	5	3	Problematic	Problematic
	1.4-Dioxane	101	12	H351	None	7	6	3	Problematic	Hazardous
	Anisole	154	52	None	None	4	1	5	Problematic	Recommende
	DME	85	-6	H360	None	7	10	3	Hazardous	Hazardous
Iydrocarbons	Pentane	36	-40	H304	H411	8	3	7	Hazardous	Hazardous
	Hexane	69	-22	H361	H411	8	7	7	Hazardous	Hazardous
	Heptane	98	-4	H304	H410	6	2	7	Problematic	Problematic
	Cyclohexane	81	-17	H304	H410	6	3	7	Problematic	Problematic
	Me-cyclohexane	101	-4	H304	H411	6	2	7	Problematic	Problematic
	Benzene	80	-11	H350	None	6	10	3	Hazardous	HH
	Toluene	111	4	H351	None	5	6	3	Problematic	Problematic
	Xylenes	140	27	H312	None	4	2	5	Problematic	Problematic
Ialogenated	DCM	40	na	H351	None	1	7	7	Hazardous	Hazardous
	Chloroform	61	na	H351	None	2	7	5	Problematic	HH
	CCl_4	77	na	H351	H420	2	7	10	Hazardous	HH
	DCE	84	13	H350	None	4	10	3	Hazardous	HH
	Chlorobenzene	132	29	H332	H411	3	2	7	Problematic	Problematic
protic polar	Acetonitrile	82	2	H319	None	4	3	3	Recommended	Problematic
	DMF	153	58	H360	None	3	9	5	Hazardous	Hazardous
	DMAc	166	70	H360	None	1	9	5	Hazardous	Hazardous
	NMP	202	96	H360	None	1	9	7	Hazardous	Hazardous
	DMPU	246	121	H361	None	1	6	7	Problematic	Problematic
	DMSO ^c	189	95	None	None	1	1	5	Recommended	Problematic
	Sulfolane ^c	287	177	H360	None	1	9	7	Hazardous	Hazardous
	HMPA	>200	144	H350	None	1	9	7	Hazardous	HH
	Nitromethane	101	35	H302	None	10	2	3	Hazardous	HH
fiscellaneous	Methoxy-ethanol	125	42	H360	None	3	9	3	Hazardous	Hazardous
	Carbon disulfide	46	-30	H361	H412	9	7	7	Hazardous	HH
cids	Formic acid	101	49	H314	None	3	7	3	Problematic	Problematic
	Acetic acid	118	39	H314	None	3	7	3	Problematic	Problematic
	Ac ₂ O	139	49	H314	None	3	7	3	Problematic	Problematic
mines	Pyridine	115	23	H302	None	4	2	3	Recommended	Hazardous
	TEA	89	-6	H314	None	6	7	3	Problematic	Hazardous

Table 7 CHEM21 solvent guide of "classical" solvents

Solvents Guide		ETHER		SANOFI		
Name	Overall ranking	ICH limit (ppm)	Occ. health	Safety	Environ- ment	Other concern
Diethyl ether	Banned	5000	OEBV2	SHB5	EHB2	Peroxides, VOC
Diisopropyl ether	Substitution advisable	Not listed	OEBV2	SHB5	EHB3	Peroxides
Dibutyl ether	Substitution advisable	Not listed	OEBV2	SHB5	EHB3	Peroxides, odor
THF	Substitution advisable	720	OEBV3 Sk	SHB4	EHB2	VOC, miscible with water, peroxides
Methyl-THF	Recommended	Not listed	OEBV2	SHB4	EHB3	Peroxides, cost
Dioxane	Substitution requested	380	OEBV3 Sk	SHB5	EHB2	Miscible with water, peroxides
Anisole	Recommended	5000	OEBV2	SHB3	EHB2	Odor
MTBE	Substitution advisable	5000	OEBV3 Sk	SHB5	EHB3	VOC
ETBE	Substitution requested	Not listed	OEBV4	SHB5	EHB3	Peroxides, lack of data
CPME	Substitution requested	Not listed	OEBV3	SHB5	EHB3	Peroxides, one supplier only
Dimethoxy ethane	Substitution requested	100	OEBV4 G2	SHB4	EHB2	CMR (R1B), peroxides
Diglyme	Substitution requested	Not listed	OEBV4 G2	SHB4	EHB2	CMR (R1B), peroxides
Diethoxymethane	Substitution requested	Not listed	OEBV4	SHB5	Not available	Reactive, considered as CMR

Table S2. Sanofi solvent guide of common solvents. Reproduced with permission.¹⁰ Copyright 2013, the Royal Society of Chemistry.

Table S3. GlaxoSmithKline solvent guide of common solvents. Reproduced with permission.¹¹ Copyright 2011, the Royal Society of Chemistry.

	Solvent	675	Malting	Roifing		Environ-		Flamm-	Ponctivity/	Life Ovela	LogicIstion	FUE Rod
Classification	click on solvent name for	number	noint 90	Doint 90	Waste	mental	Health	ability &	Stability/	Score	Elad	Elan
-	hyperlink to more detail	number	point	FUIL	*	Impact •	Y	Explosio *	Stability	Score	nag 🗸	ridg -
	cis-Decalin	493-01-6	-43	196	7	3	7	6	7	7		
	ISOPAR G	64742-48-9	-60	163	8	2	9	6	10			
	Isooctane	540-84-1	-107	99	6	4	8	3	10	7		
	Methyl cyclohexane	108-87-2	-127	101	6	5	8	3	10	7		
	Cyclohexane	110-82-7	7	81	5	5	7	2	10	7		
Hydrocarbon	Heptane	142-82-5	-91	98	6	3	8	3	10	7		
	Pentane	109-66-0	-130	36	5	6	8	2	10	7		
	Methylcyclopentane	96-37-7	-142	72	6	4	5	2	9	7		
	2-Methylpentane	107-83-5	-153	60	5	4	7	2	10	7		
	Hexane	110-54-3	-95	69	5	3	4	2	10	7		
	Petroleum spirit	8032-32-4	-73	55	6	2	2	3	10	7		
	Di(ethylene glycol)	111-46-6	-10	246	6	8	7	9	9	8		-
	Ethoxybenzene	103-73-1	-29	170	8	4	7	10	10			
	Tri(ethylene glycol)	112-27-6	-7	285	6	8	6	10	9	7		
	Sulfolane	126-33-0	28	282	5	9	6	10	10			
	DEG monobutyl ether	112-34-5	-68	231	6	7	7	9	6	7		
	Anisole	100-66-3	-38	154	6	6	7	7	6	5		3
	Diphenyl ether	101-84-8	27	258	8	5	4	8	6			
	Dibutyl ether	142-96-1	-95	140	7	7	4	5	5	4		
	t-Amyl methyl ether	994-05-8	-80	86	5	5	5	5	9	8		
Ether	t-Butylmethyl ether	1634-04-4	-109	55	4	5	5	3	9	8		
Lunci	Cyclopentyl methyl ether	5614-37-9	-140	106	6	4	4	5	8	4		-
	t-Butyl ethyl ether	637-92-3	-74	70	5	5	4	4	9	8		
	2-Methyltetrahydrofuran	96-47-9	-137	78	4	5	4	3	6	4		
	Diethyl ether	60-29-7	-116	35	4	4	5	2	4	6		
	Bis(2-methoxyethyl) ether	111-96-6	-68	162	4	5	2	8	4	6		
	Dimethyl ether	115-10-6	-141	-25	3	5	7	1	4	7		
	1,4-Dioxane	123-91-1	12	102	3	4	4	4	5	6		
	Tetrahydrofuran	109-99-9	-108	65	3	5	6	3	4	4		
	1,2-Dimethoxyethane	110-71-4	-58	85	4	5	2	4	4	7		
	Diisopropyl ether	108-20-3	-86	68	4	3	8	1	1	9		
	Dimethylpropylene urea	7226-23-5	-23	247	7	7	4	9	7	3		
	Dimethyl sulphoxide	67-68-5	19	189	5	5	7	9	2	6	-	
	Formamide	75-12-7	3	220	4	7	2	10	8	8		
	Dimethyl formamide	68-12-2	-61	153	4	6	2	9	9	7		
Dipolar aprotic	N-Methylformamide	123-39-7	-4	200	4	6	2	10	10	7		
	N-Methyl pyrrolidone	872-50-4	-24	202	5	6	3	9	8	4		
	Propanenitrile	107-12-0	-93	97	3	6	4	6	9			
	Dimethyl acetamide	127-19-5	-20	165	5	6	2	10	8	2		
	Acetonitrile	75-05-8	-45	82	2	6	6	6	10	3		

NO.	Solvent	Health score ^a	Safety score ^a	Environment score ^a	Ranking by defined	$\delta_{_{\mathrm{D}}}$	δ_{p}	$\delta_{_{ m H}}$	b.p.
1	CF	2	7	5	Highly hazardous	17.8	3.1	5.7	61 °C
2	СВ	3	2	7	Problematic	19.0	4.3	2.0	132 °C
4	Toluene	6	6	3	Problematic	18.0	1.4	2.0	110 °C
5	o-Xylene	4	2	5	Problematic	18.0	2.6	2.8	144 °C
6	THF	7	6	5	Problematic	16.8	5.7	8.0	66 °C
7	Me-THF	5	6	3	Problematic	16.4	4.7	4.6	80 °C
8	Water	1	1	1	Recommend	15.5	16.0	42.3	100 °C
9	Ethyl alcohol	4	3	3	Recommend	15.8	8.8	19.4	78 °C
10	Anisole	2	3	2	Recommend	17.8	4.4	6.9	155 °C

Table S4. The reported evaluation coefficient, HSP parameters and boiling point of solvents.

^a The value represents the hazard level.

Fig. S2. GHS labels of representative solvents and anisole.

Fig. S3. The GPC trace of PBNT-TzTz recorded at 140 °C with 1,2,4-trichlorobenzene as eluent.

Table S5. The solubility of the polymers in anisole at room temperature.

Polymer	D18	PM6	PTQ10	PBDT-TzTz	PTTz-3HD	PBNT-TzTz
$M_{\rm n}$ (kDa)	45	47	32	43	54	42
Solubility (mg mL ⁻¹)	< 0.1	< 0.1	< 0.1	<0.1	<0.1	11.2

Fig. S4. Photographs of PBNT-TzTz, PBDT-TzTz, and PTTz-3HD in anisole.

Fig. S5. The dipole moment of BNT (left) and BDT (right) calculated at the B3LYP/6-31+G* level.

Fig. S6. Photographs of the other BNT-based polymers in anisole at the concentration of 8 mg mL^{-1} .

Fig. S7. DFT calculation results based on three repeat units of PBNT-TzTz at the B3LYP/6- $31+G^*$ level. (a) Optimized molecular geometries. (b) Calculated molecular orbitals.

Fig. S8. Temperature-dependent UV-vis absorption spectra of PBNT-TzTz in anisole solution $(1.0 \times 10^{-5} \text{ M})$.

Fig. S9. Square wave voltammograms of PBNT-TzTz and Y6-BO. $E_{\text{LUMO/HOMO}} = -(5.13 + E_{\text{ox/re}} - E_{\text{Fc/Fc+}}) \text{ eV}$ and $E_{\text{Fc/Fc+}} = 0.63 \text{ eV}$.

Fig. S10. Thermal properties of the polymer PBNT-TzTz. (a) The TGA plots. (b) The DSC traces.

Fig. S11. The chemical structures and boiling points of commonly used solvent additives and limonene.

Fig. S12. Normalized absorption spectra of the PBNT-TzTz:Y6-BO blend films processed from different Anisole:LM solvent mixtures.

Table S	56 . 7	The	device	parameters	of	the	OSCs	based	on	PBNT-TzTz:Y6-BO	blend	under
AM1.50	G irr	adia	tion at 1	100 mW cm	-2.							

D/Λ ratio	Solvent (v.v.)	Т۸	$V_{\rm oc}$	$J_{ m sc}$	FF	PCE	
DATAILO	D/A latio Solvent (v.v)		(V)	$(mA \ cm^{-2})$	(%)	(%)	
1:1.2	Anisole:LM=10:0	/	0.88	24.18	63.5	13.52	
1:1.2		100.00	0.88	25.40	70.0	15.65	
1:1	Anisole:LM=8:2	100 °C	0.86	24.65	67.3	14.27	
1:1.5		10 11111	0.88	23.97	65.1	13.73	
		60 °C	0.87	24.96	667	14 48	
		10 min	0.07	21.90	00.7		
	Anisole:LM=8:2	80 °C	0.88	25.13	68.3	15.10	
		10 min	0.00	20110			
		120 °C	0.88	25.25	68.6	15 24	
1:1.2		10 min	0.00	23.25	00.0	13.24	
	Anisole:LM=6:4	_	0.88	24.64	66.9	14.51	
	Anisole:LM=4:6	100 °C	0.88	24.66	62.3	13.52	
	Anisole:LM=2:8	10 min	0.87	23.62	58.0	11.95	
	Anisole:LM=0:10	_	0.87	22.26	54.7	10.59	

Fig. S13. The photoluminescence spectra of PBNT-TzTz, Y6-BO, and the blends. (a) PBNT-TzTz and the PBNT-TzTz:Y6-BO blend films processed from different solvents with excitation wavelength at 580 nm. (b) Y6-BO and the PBNT-TzTz:Y6-BO blend films processed from different solvents with excitation wavelength at 780 nm.

Table S	7. The o	auenching	efficiency	of the	PBNT-	TzTz:Y6	-BO	blend	films.
INDICN				01 0110	1 1 1 1	1212.10		010110	

Solvent	ΔPL_D^a	$\Delta PL_A{}^b$
Anisole:LM=10:0	90.5%	80.5%
Anisole:LM=8:2	95.4%	85.3%
Anisole:LM=6:4	93.3%	81.5%
${}_{a} \Delta PL_{D} = \frac{1 - PL_{blend}}{PL_{donor}}; b \Delta PL_{A} = \frac{1 - PL_{blend}}{PL_{blend}}$	^A cceptor	
(a) 8 Anisole:LM=10:0	(b) 8 Anisole:LM=8:2 $\vec{c} = 4$	(c) 8 Anisole:LM=6:4
0- -2- -4 -3 -2 -1 0 1 2 In V	2 0 - - - - - - - - - - - - - - - - - -	2
$\begin{array}{c} (d) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(e)10 Anisole:LM=8:2	(f) 8 Anisole:LM=6:4
in V		

Fig. S14. The J–V curves of the single-carrier devices based on the PBNT-TzTz:Y6-BO blends processed from different solvents. (a-c) The hole-only devices. (d-f) The electron-only devices.

Solvent	$\mu_{\rm e} ({\rm cm}^2{ m V}^{-1}{ m s}^{-1})$	$\mu_{\rm h}({ m cm}^2~{ m V}^{-1}~{ m s}^{-1})$
Anisole:LM=10:0	7.72×10 ⁻⁴	9.97×10 ⁻⁴
Anisole:LM=8:2	1.19×10 ⁻³	1.51×10 ⁻³
Anisole:LM=6:4	9.15×10 ⁻⁴	1.22×10^{-3}

Table S8. The mobilities of the PBNT-TzTz:Y6-BO blend films acquired from single-carrier devices.

Table S9. The exciton	dissociation	probability	of the	PBNT-	TzTz:Y	6-BO	blend	films

Solvent	<i>P</i> (E, T)
Anisole:LM=10:0	95.3%
Anisole:LM=8:2	97.6%
Anisole:LM=6:4	95.8%

Fig. S15. (a) Transient photovoltage and (b) transient photocurrent of the OSCs based on PBNT-TzTz:Y6-BO processed from anisole:LM solvent mixtures.

Table S10. The charge carrier lifetime and decay times in the PBNT-TzTz:Y6-BO devices.

Solvent	Charge carrier lifetime (µs)	Charge carrier decay time (μ s)
Anisole:LM=10:0	0.72	2.63
Anisole:LM=8:2	0.77	1.53
Anisole:LM=6:4	0.59	3.53

Fig. S16. The 2D-GIWAXS patterns of the neat PBNT-TzTz and Y6-BO films.

Table S11. Characteristic length scale of the neat PBNT-TzTz and Y6-BO films measured by GIWAXS.

	π - π stacking (010)			Lamellar stacking (100)			
Film	q (Å ⁻¹)	d-spacing (Å)	CCL (Å)	q (Å ⁻¹)	d-spacing (Å)	CCL (Å)	
PBNT-TzTz	1.68	3.74	16.44	0.35	17.94	NA	
Y6-BO	1.77	3.55	19.63	0.28	22.27	53.42	

Table S12. Characteristic length scale of the PBNT-TzTz: Y6-BO blend films measured by GIWAXS.

_	π - π stacking (010)			Lamellar stacking (100)			
Film	q (Å ⁻¹)	<i>d</i> -spacing (Å)	CCL (Å)	$\stackrel{q}{({ m \AA}^{-1})}$	<i>d</i> -spacing (Å)	CCL (Å)	
Anisole:LM=10:0	1.73	3.63	12.71	0.37	16.97	35.89	
Anisole:LM=8:2	1.73	3.63	15.28	0.36	17.44	36.30	
Anisole:LM=6:4	1.73	3.63	14.81	0.37	16.97	36.30	

Table S13. Summary for reported OSCs processed from eco-compatible solvents.^a

Solvent	Active layer	V _{oc} (V)	$J_{ m sc}$ (mA cm ⁻²)	FF	PCE (%)	Reference
2-MA	PBDT-TS1:PC71BM	0.79	17.39	0.70	9.67	12
Anisole	PBDT-TS1:PPDIODT	0.76	14.67	0.49	5.43	13
Anisole	PB3T:IT-M	1.00	18.9	0.63	11.9	14
Water/Ethanol	PPDT2FBT-A:PC ₆₁ BO ₁₂	0.76	5.08	0.53	2.05	15
2-MA	PffBT-RT4:PC71BM	0.71	17.40	0.71	8.84	16
2-MA	asy-BTBDTs:PC71BM	0.80	10.4	69.7	5.70	17
2-MA	PTB7-Th:PC71BM	0.78	16.9	0.72	9.50	18
Water/Ethanol	PPDT2FBT-A: PC71BO15	0.75	6.23	0.54	2.51	19
Water/Ethanol	PFO:PCBO-12-AM	0.60	6.14	0.61	2.25	20
Anisole/LM	PBNT-TzTz:Y6-BO	0.88	25.40	0.70	15.65	This work

^a 2-MA represents 2-methylanisole; LM represents limonene.

Reference

[1] S. Pang, Z. Wang, X. Yuan, L. Pan, W. Deng, H. Tang, H. Wu, S. Chen, C. Duan, F. Huang and Y. Cao, *Angew. Chem. Int. Ed.* 2021, **60**, 8813.

[2] I. Osaka, R. Zhang, G. Sauvé, D.-M. Smilgies, T. Kowalewski and R. D. McCullough, J. Am. Chem. Soc. 2009, 131, 2521.

[3] B. Yin, Z. Chen, S. Pang, X. Yuan, Z. Liu, C. Duan, F. Huang and Y. Cao, *Adv. Energy. Mater.* 2022, **12**, 2104050.

[4] R. E. M. Willems, C. H. L. Weijtens, X. de Vries, R. Coehoorn and R. A. J. Janssen, *Adv. Energy Mater.* 2019, **9**, 1803677.

[5] J. G. Osteryoung and R. A. Osteryoung, Anal. Chem. 1985, 57, 101.

[6] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian-09, Revision A.02*, Wallingford CT.

[7] J. C. Blakesley, F. A. Castro, W. Kylberg, G. F.A. Dibb, C. Arantes, R. Valaski, M. Cremona, J. S. Kim and J. Kim, *Org. Electron.* 2014, **15**, 1263.

[8] F. Campana, C. Kim, A. Marrocchi and L. Vaccaro, J. Mater. Chem. C 2020, 8, 15027.

[9] D. Prat, A. Wells, J. Hayler, H. Sneddon, C. Robert McElroy, S. Abou-Shehadad and P. J. Dunn, *Green Chem.* 2016, **18**, 288.

[10] D. Prat, O. Pardigon, H.-W. Flemming, S. Letestu, Ve. Ducandas, P. Isnard, E. Guntrum,
T. Senac, S. Ruisseau, P. Cruciani and P. Hosek, *Org. Process Res. Dev.* 2013, 17, 1517.

[11] R. K. Henderson, C. Jiménez-González, D. J. C. Constable, S. R. Alston, G. G. A. Inglis,

G. Fisher, J. Sherwood, S. P. Binks and A. D. Curzons, Green Chem. 2011, 13, 854.

[12] H. Zhang, H. Yao, W. Zhao, L. Ye and J. Hou, Adv. Energy Mater. 2016, 6, 1502177.

[13] S. Li, H. Zhang, W. Zhao, L. Ye, H. Yao, B. Yang, S. Zhang and J. Hou, *Adv. Energy Mater.* 2016, **6**, 1501991.

[14] D. Liu, B. Yang, B. Jang, B. Xu, S. Zhang, C. He, H. Y. Woo and J. Hou, *Energy Environ*. *Sci.* 2017, **10**, 546.

[15] C. Lee, H. R. Lee, J. Choi, Y. Kim, T. Luan Nguyen, W. Lee, B. Gautam, X. Liu, K. Zhang,

F. Huang, J. H. Oh, Han Y. Woo and B. J. Kim, Adv. Energy Mater. 2018, 8, 1802674

[16] S. Y. Son, J. W. Kim, J. H. Lee, G.-W. Kim, J. Hong, J. Y. Kim and T. Park, *J. Mater. Chem. A* 2018, **6**, 24580.

[17] J. Lee, T. H. Lee, M. M. Byranvand, K. Choi, H. I. Kim, S. A. Park, J. Y. Kim and T. Park, *J. Mater. Chem. A* 2018, **6**, 5538.

[18] K. Zhang, Z. Chen, A. Armin, S. Dong, R. Xia, H.-L. Yip, S. Shoaee, F. Huang and Y. Cao, *Sol. RRL* 2018, 2, 1700169.

[19] C. Kim, H. Kang, N. Choi, S. Lee, Y. Kim, J. Kim, Z. Wu, H. Y. Woo and B. J. Kim, *J. Mater. Chem. C* 2020, **8**, 15224.

[20] L. Shang, W. Zhang, B. Zhang, Y. Gao, S. He, G. Dong, W. Li, H. Bai, G. Yue, S. Chen and F. Tan, *Sol. RRL* 2022, DOI: 10.1002/solr.202200605.