Supporting information

A drug discovery approach based on comparative transcriptomics between two potentially toxin-secreting marine annelids: *Glycera alba* and *Hediste diversicolor*

Inês Moutinho Cabral, Carolina Madeira, Ana R. Grosso, Pedro M. Costa

Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal

UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal

Table S.1. Sampling
Table S.2. The primers sequences used for PCR and RT-qPCR
Figure S.1. Relative expression of selected genes in <i>Glycera alba</i> and <i>Hediste diversicolor</i>
Figure S.2. Volcano plot of differentially-expressed genes
Figure S.3. Heatmaps illustrating differential gene expression profiling
Table S.3. Top10 overexpressed genes in <i>Glycera alba</i> 's proboscis relative to the skin. S9
Figure S.4. Aminoacid sequence of a cysteine-rich venom protein isolated from <i>Glycera alba</i>
Figure S.5. Aminoacid sequence of an ovoinhibitor-like protein isolated from <i>Glycera</i> alba
Figure S.6. Aminoacid sequence of a pathogenesis-related protein (a CRISP) isolated from <i>Hediste diversicolor</i>
Figure S.7. Aminoacid sequence of thyrostimulin beta-5 subunit isolated from <i>Hediste</i> diversicolor
Figure S.8. Protein-protein interactions between the potential interactors from the proboscis and skin of <i>Glycera alba</i> and the human proteome retrieved from the HuRI platform
Figure S.9. Protein-protein interactions between the potential interactors from the glands and proboscis of <i>Hediste diversicolor</i> and the human proteome retrieved from the HuRI platform
Table S.4. Enriched biological processes affected by the potential interactors from the proboscis of <i>Glycera alba</i> and their human targets
Table S.5. Enriched biological processes affected by the potential interactors from the skin of <i>Glycera alba</i> and their human targets
Table S.6. Enriched biological processes affected by the potential interactors from the glands of <i>Hediste diversicolor</i> and their human targets. S24
Table S.7. Enriched biological processes affected by potential interactors from the proboscis of <i>Hediste diversicolor</i> and their human targets

	Sample Name	Species	Organ	Number of	Number of Raw
				Individuals	Reads
1	GaPR1	Glycera alba	Proboscis	1	39 749 500
2	GaPR2	Glycera alba	Proboscis	2 (pool)	43 177 154
3	GaPR31	Glycera alba	Proboscis	3 (pool)	45 489 590
4	GaBW1	Glycera alba	Skin	1	43 073 170
5	GaBW2	Glycera alba	Skin	3 (pool)	46 741 642
6	GaBW3	Glycera alba	Skin	3 (pool)	38 915 178
7	Hd1G	Hediste diversicolor	Glands	15 (pool)	31 099 868
8	Hd2G	Hediste diversicolor	Glands	10 (pool)	123 202 926
9	Hd3G	Hediste diversicolor	Glands	10 (pool)	49 858 858
10	Hd1PR	Hediste diversicolor	Proboscis	15 (pool)	42 056 540
11	Hd2PR	Hediste diversicolor	Proboscis	10 (pool)	94 650 066
12	Hd3PR	Hediste diversicolor	Proboscis	10 (pool)	42 195 514

Table S.1. Sampling.

Table S.2. The primers sequences used for PCR and RT-qPCR. The genes of interest amplified encoded for an ovoinhibitor (Ov), a cysteine-rich venom protein (TX31), a pathogenesis-related protein (a CRISP) (Pat) and thyrostimulin beta-5 subunit (Thy), whereas housekeeping calibrators were 18S and beta-actin (BAct). The primer forward of the Thyrostimulin beta-5 subunit was used for PCR and RT-qPCR.

Target	Primers	PCR or RT- qPCR	Primer Sequences	Amplicon Size
18S	Foward	PCR/RT-qPCR	CGATGGTACGTGATATGCC	176
	Reverse	PCR/RT-qPCR	CGAATGAGTCCCGTATTGT	_
BAct	Foward	PCR/RT-qPCR	CGGTATCGTGCTGGATTC	163
	Reverse	PCR/RT-qPCR	CGTGGTGGTGAAGCTGTA	_
Ov	Foward_1	PCR	GCTTACATCTTATCATGCTC	639
	Reverse_1	PCR	CTGTATTGCACTCAGGTTC	_
	Foward_2	PCR	CTACAAGTCGTGTCATGC	789
	Reverse_2	PCR	CTGCTTCTATTGGTTGGC	_
TX31	Foward	PCR	GAATCCTGAACCTGTCTGTG	954
	Reverse	PCR	CAACCTGTTCTTAACATACTCC	_
Pat	Foward	PCR	GTGGTCAAGATCAGAACTGC	667
	Reverse	PCR	GGAAACCATTTACAGGAGAGG	_
Thy	Foward	PCR/RT-qPCR	GGACAGGCATGAAGGACA	465
	Reverse	PCR	CTCACAACGATTCGCAACT	_
Ov	Foward	RT-qPCR	GTGTACCTACGAATACAACC	150
	Reverse	RT-qPCR	CCATCAGATCCGCAAACT	_
TX31	Foward	RT-qPCR	AGGCTTCTTGAATGATGCT	172
	Reverse	RT-qPCR	TGTGTTGGACAGTGGTT	_
Pat	Foward	RT-qPCR	ACCTCATCATCCTCTTTGC	140
	Reverse	RT-qPCR	TCTGCTGCTCAGTCTTGC	_
Thy	Reverse	RT-qPCR	AGGATACAGACGGCAGTG	167

Figure S.1. Relative expression of selected genes in *Glycera alba* and *Hediste diversicolor*. The expressed sequence tags (EST) detected by RT-qPCR were in mRNAs that encoded for an ovoinhibitor-like protein (Ov), a cysteine-rich venom protein (TX31), a pathogenesis-related protein (a CRISP) (Pat) and thyrostimulin beta-5 subunit (Thy). Relative levels of expression of Ov and TX31 were compared between *Glycera alba*'s proboscis (PR) and skin (BW) (A and B), while, for Thy and Pat, the comparison was between *Hediste diversicolor*'s glands (G) and proboscis (PR) (C and D). In A) and C), the levels of expression were normalized with the house-keeping gene 18S, while in B) and D) were with beta-actin. *indicates significant differences between organs (Student's

t-test, p < 0.05). Although the relative expression of gene that encoded the ovoinhibitorlike protein was not found to be significantly different, likely due to relatively high error and low *n*, the trend is similar to RNA-Seq-based quantification, i.e., a higher expression in the proboscis relative to the skin. The relative expression of the gene that encodes thyrostimulin beta-5 subunit was not either found to be significantly different between *H*. *diversicolor*'s organs. This might be due to the log₂FC value, which was 2.33.

Figure S.2. Volcano plot of differentially-expressed genes. A) between *Glycera alba*'s proboscis and skin. B) between *Hediste diversicolor*'s glands and proboscis. Black dots represent genes that are not differentially-expressed between organs. The cut-off for differential expression was set at $|\log_2 FC| > 1.5$ and FDR-adjusted p < 0.05.

Figure S.3. Heatmaps illustrating differential gene expression profiling. A) between *Glycera alba*'s proboscis (PR) and skin (BW). B) between *Hediste diversicolor*'s glands (G) and proboscis (PR). A $|\log_2FC| > 1.5$ and an FDR adjusted p < 0.05 were the cutoffs set for differential expression. The horizontal dendrogram illustrates the association between the three independent replicates, whereas the vertical dendrogram represents the association between the expression profiling of different genes. The metric and function of the cluster analysis are Euclidian distances and complete linkage, respectively. Side bars indicate coding regions with homology-matching with potential toxins (blue) and permeabilizing or diffusing agents (red).

Table S.3. Top10 overexpressed genes in *Glycera alba*'s proboscis relative to the skin. The cut-offs established were $log_2FC > 1.5$ and an FDR-adjusted p < 0.05.

log ₂ FC	log ₂ CPM	FDRp	Protein	Accession	%ID	<i>e</i> -value	Organism
14.595	6.903	2.37E-14	Cysteine-rich venom protein (CRVP) (Substrate-specific	Q7YT83	35.567	1.59E-22	Conus textile
			endoprotease Tex31)				
14.566	6.875	3.27E-13	Pancreatic triacylglycerol lipase (Fragment)	Q64425	34.921	1.75E-47	Myocastor coypus
14.093	6.402	1.31E-08	Plasma kallikrein (Plasma prekallikrein) (PKK) [Cleaved into:	P03952	39.382	3.43E-45	Homo sapiens
			Plasma kallikrein heavy chain; Plasma kallikrein light chain]				
14.061	6.369	5.51E-13	Tenascin-R (Neural recognition molecule J1-160/180)	Q8BYI9	35.859	8.64E-26	Mus musculus
13.950	6.259	1.62E-09	Cysteine-rich venom protein (CRVP) (Substrate-specific	Q7YT83	37.008	6.51E-39	Conus textile
			endoprotease Tex31)				
13.759	6.068	5.63E-10	Tenascin-R (Restrictin)	Q05546	36.869	2.78E-26	Rattus norvegicus
13.756	6.065	2.58E-10	Prolow-density lipoprotein receptor-related protein 1 [Cleaved into:	G3V928	34.848	2.02E-46	Rattus norvegicus
			Low-density lipoprotein receptor-related protein 1 85 kDa subunit				
			(LRP-85); Low-density lipoprotein receptor-related protein 1 515				
			kDa subunit (LRP-515); Low-density lipoprotein receptor-related				
			protein 1 intracellular domain (LRPICD)]				
13.717	6.027	7.02E-09	Glycerotoxin (Fragment)	A0A1U9VX95	31.017	2.37E-172	Glycera tridactyla
13.613	5.923	2.73E-04	Ovoinhibitor (Serine protease inhibitor Kazal-type 5) (allergen Gal	P10184	29.216	1.34E-30	Gallus gallus
			d OIH)				

log ₂ FC	log ₂ CPM	FDRp	Protein	Accession	%ID	<i>e</i> -value	Organism
13.595	5.905	2.24E-08	A disintegrin and metalloproteinase with thrombospondin motifs 7	Q1EHB3	30.000	1.50E-19	Rattus norvegicus
			(ADAM-TS 7)				

Predicted	1	MLPILMLSVALIGFLNDAVMGRQIHPFHRQFHHKRVSSGCTVSGVAYPSGHTM	53
OL606744	1	MLPILMLSVALIGFLNDAVMGRQIHPFHRQFHHKRVSSGCTVSGVAYPSGHTM	53
Q7YT83	1	MLSTMQTVGAVLMLSIVLVAGRKRHHCDSKYYELTPAHTM	40
Predicted	54	${\tt CLSPASNMTPKPLSNTDQNAVVDKHNSYRSDVSPKASDMMKMYWDDSIAAVAQAWAETCP}$	113
OL606744	54	CLSPASNMTPXPLSNTDQNAVVDKHNSYRSDVSPKASNMMKMYWDDSIAAVAQAWAETCP	113
Q7YT83	41	II I II III I II I III I II I III I CLTDKPNAVAVPLTQETEHEILEMHNKIRADVT-DAANMLKMEWDERLATVAQKWAMQC-	98
Predicted	114	${\tt TTSFPHDTD-RSVPAYGISIGQNGAFGQTDYTAAVASWHGEVTDFTYGAANALEDVGH}$	170
OL606744	114	TTSFPHDTD-RSVPAYGISIGQNGAFGQTDYTAAVASWHGEVTDFTYGAANALEDVGH	170
Q7YT83	99	ILGHDSGRRGEPDLPGSVGQNVAWSSGDLTFLGAVQMWADEIVDFQYGVWTDGTGH	154
Predicted	171	YTQVVAGPAVAIGCGAANCPDNSYPDVFFCNYAYGQSDFDNPYVSDINGCTNTCGSNCVN	230
OL606744	171	YTQVVAGPAVAIGCGAANCPDNSYPDVFFCNYAYGQSDFDTPYVSDTXGCTNTCGSNCVN	230
Q7YT83	155	YIQQVFAGASRIGCGQSACGNNKYFVCNYYKGTMG-DEPYQLGRPCSQCRSSCQH	208
Predicted	231	NLCDCGNKICRNGGTLNLSSCKCDCLSIYSGDTCQTTNCPDEETLCW	277
OL606744	231	NLCDCGNKICLNGGTLDLSSCKCDCLSVYSGDTCQTTNCPDEETLCW	277
Q7YT83	209	IRGSQGRWGSLCDCTNGPDACFNGGIFNINTCQCECSGIWGGADCQEKHCPNEDFDDMC-	267
Predicted	278	RWGSSPMCSWGPTVVDCPYTCGVC 301	
OL606744	278	RWGSSPMCSWGPTVVDCPYTCGVC 301	
Q7YT83	268	RYPDALRRPQHWCQYDNFQSDCPILCGYCPNPN 300	

Figure S.4. Aminoacid sequence of a cysteine-rich venom protein isolated from *Glycera alba*. The validated sequence (GenBank accession OL606744) was aligned with the original translated transcript as reconstructed by Trinity (predicted) along with the best hit produced by homology-matching against Swiss-Prot (cysteine-rich venom protein from *Conus textile*, Q7YT83).

Predicted	1	MLPTFRLLAILVVVGVASSYDECLRACPFIYAPVCDAEG	39
OL606745	1	MLPTFRLLAILVVVGVASSYDECLRACPFIYAPVCDAEG	39
P10184	1	MTDWVLHHKVGPLDMTTRYIFPLLPLPFLPHSESKRAVCAPRCSAMRTARQFVQVALALC	60
Predicted	40	NFYDNACMMQADACIGDRKVVPAMCTMEYKPVCGSDGRTYANECQLNARGCL	91
OL606745	40	NFYDNACMMQADACIGDRKVVPAMCTMEYKPVCGSDGRTYANECQLNARGCL	91
P10184	61	CFADIAFGIEVNCSLYASGIGKDGTSWVACPRNLKPVCGTDGSTYSNECGICLYNREHGA	120
Predicted	92	GVMKMSDGECPSRSGRRSLGECLTICTMEYNPVCGTNGKMYSNFCQLQV	140
OL606745	92	GVMKMSDGECPSRSGRRSLGECLTICTMEYNPVCGTNGKMYSNFCQLQV	140
P10184	121	I I IIII I I I NVEKEYDGECRPKHVTIDCSPYLQVVRDGNTMVACPRILKPVCGSDSFTYDNECGICAYN	180
Predicted	141	ACPYNYNPVCGSDGITYGNLC	173
OL606745	141	ACPYNYNPVCGSDGITYGNLC	173
P10184	181	AEHHTNISKLHDGECKLEIGSVDCSKYPSTVSKDGRTLVACPRILSPVCGTDGFTYDNEC	240
Predicted	174	SLESQSCFNVTYVSDGECEEASKAADDEDEPECNTACTYEYNPVCGSDGV	223
OL606745	174	SLESQSCFNVTYVSDGECEEASKAADDEDEPECNTACTYEYNPVCGSDGV	223
P10184	241	GICAHNAEQRTHVSKKHDGKCRQEIPEIDCDQYPTRKTTGGKLLVRCPRILLPVCGTDGF	300
Predicted	224	KYANPCVLGVASCQSNGAISMPMCTLEYQPVC	255
OL606745	224	KYANPCVLGVASCQSNGAISMPMCTLEYQPVC	255
P10184	301	TYDNECGICAHNAQHGTEVKKSHDGRCKERSTPLDCTQYLSNTQNGEAITACPFILQEVC	360
Predicted	256	GSDGQTYGNQCMLDAQKCLNVTKVSEGECEAAALMSGGEKQEKCDTTCTY	305
OL606745	256	GSDGQTYGNQCMLDAQKCLNVTKVSEGECEAAALMSGGEKXEKCDTTCTY	305
P10184	361	GTDGVTYSNDCSLCAHNIELGTSVAKKHDGRCREEVPELDCSKYKTSTLKDGRQVVACTM	420
Predicted	306	EYNPVCGSDGVKYANPCVLKVASCQSGGAISMPICTM	342
OL606745	306	EYNPVCGSDGVKYANPCVLKVASCQSGGAISMPICTM	342
P10184	421	IYDPVCATNGVTYASECTLCAHNLEQRTNLGKRKNGRCEEDITKEHCREFQKVS-PICTM	479
Predicted	343	EYRPVCGSDGLMYGNRCMLNAQRCMGVERADWSKCGTVQKKRKLVDLLRAFANQ 396	
OL606745	343	EYRPVCGSDGLMYGNRCMLNAQRCMGVERADWSKCGTVQKKRKLVDLLRAFANQ 396	
P10184	480	EYVPHCGSDGVTYSNRCFFCNAYVQSNRTLNLVSMAAC- 517	

Figure S.5. Aminoacid sequence of an ovoinhibitor-like protein isolated from *Glycera alba*. The validated sequence (GenBank accession OL606745) was aligned with the original translated transcript as reconstructed by Trinity (predicted) along with the best hit produced by homology-matching against Swiss-Prot (ovoinhibitor from *Gallus gallus*, P10184).

Predicted	1	MTNLIILFACFAFAVATPIELINPDANNYEEMMSKRGTCGAQLARLSSRSATNFLNAHNT	60
OL606746	1	MTNLIILFACFAFAVATPIELINPDANNYEEMMSKRGTCGAQLARLSSRSATNFLNAHNT	60
P09042	1	-MEFVLFSQMSSFFLVSTLLLFLIISHSCHAQNSQQDYLDAHNT	43
Predicted	61	KRQQEGQGLSGLTWDSDLAARAQELANKCVFNHGLATDCNGKSCGQNIYYSGGSSF	116
OL606746	61	KRQQEGQGLSGLTWDSDLAARAQELANKCVFNHGLATDCNGKSCGQNIYYSGGSSF	116
P09042	44	ARADVGVEPLTWDDQVAAYAQNYASQLAADCNLVHSHGQYGENLAWGSGDFL	95
Predicted	117	SAAKVVDSWYSEKNDFTYSSNSCASGKACGHYTQIVWKSTQKVGCAVADCTGKVMGYSPE	176
OL606746	117	SAAKVVDSWYSEKNDFTYSSNSCASGKACGHYTQIVWKSTQKVGCAVADCTGKVMGYSPE	176
P09042	96	TAAKAVEMWVNEKQYYAHDSNTCAQGQVCGHYTQVVWRNSVRVGCARVQCNNGG	149
Predicted	177	YIAVCNYFPPGNYIGQKPY 195	
OL606746	177	YIAVCNYFPPGNYIGQKPY 195	

Figure S.6. Aminoacid sequence of a pathogenesis-related protein (a CRISP) isolated from *Hediste diversicolor*. The validated sequence (GenBank accession OL606746) was aligned with the original translated transcript as reconstructed by Trinity (predicted) along with the best hit produced by homology-matching against Swiss-Prot (pathogenesis-related protein 1C from *Nicotiana tabacum*, P09042).

Predicted	1	MKDTRHLFWLLAMVMTMTVMTSSGHPLASDVISMRKRSGQFDESAVTHCRLYPNWKLSVN	60
OL606747	1	MKDTRHLFWLLAMVMTMTVMTSSGHPLASDVISMRKRSGQFDESAVTHCRLYPNWKLSVN	60
A0A0F7YZI5	1	VDPRTTLQCHVRSYTFRATK	41
Predicted	61	RDFLAENGTIIPCSAVIDVSVCVGGCDTSEIPDYKVPFKIINHPVCTYGDVKPRTVRICG	120
OL606747	61	RDFLAENGTIIPCSAVIDVSVCVGGCDTSEIPDYKVPFKIINHPVCTYGDVKPRTVRICG	120
A0A0F7YZI5	42	PPIVNENGDPVTCQGDVRVSSCWGRCDSSEIGDYKMPFKISNHPVCTYTGRVSRTVRLSQ	101
Predicted	121	-DDHPAPFAEVFDAVSCVCQPCSRSNASCESL 151	
OL606747	121	-DDHPAPFAEVFDAVSCVCQPCSRSNASCESL 151	
A0A0F7YZI5	102	CAGYPDPTVQVFDATGCACQFCNSETQLCEKLNG 135	

Figure S.7. Aminoacid sequence of thyrostimulin beta-5 subunit isolated from *Hediste diversicolor*. The validated sequence (GenBank accession OL606747) was aligned with the original translated transcript as reconstructed by Trinity (predicted) along with the best hit produced by homology-matching against Swiss-Prot (thyrostimulin beta-5 subunit from *Conus victoriae*, A0A0F7YZI5).

Figure S.8. Protein-protein interactions between the potential interactors from the proboscis and skin of *Glycera alba* and the human proteome retrieved from the HuRI platform. Interactors

were the human homologs of putative proteins up-regulated in the proboscis (A) and in the skin (B).

Figure S.9. Protein-protein interactions between the potential interactors from the glands and proboscis of *Hediste diversicolor* and the human proteome retrieved from the HuRI platform.

Interactors were the human homologs of putative proteins up-regulated in the glands (A) and in the proboscis (B).

Table S.4. Enriched biological processes affected by the potential interactors from the proboscis of *Glycera alba* and their human targets. The interactors were the human homologs of the proteins up-regulated in the proboscis. The FDR-adjusted p < 0.05 was set as the cut-off. The GO enrichment analysis was performed in the Database for Annotation, Visualization and Integrated Discovery (DAVID).

	GO Terms	%	FDRp	Human targets	Interactor
1	positive regulation of protein insertion into mitochondrial membrane	8.065	1.60E-10	BCL2, BID, CASP8, SFN, YWHAB, YWHAE, YWHAH,	BAD
	involved in apoptotic signaling pathway [GO:1900740]			YWHAZ, YWHAQ	
2	negative regulation of extrinsic apoptotic signaling pathway via death domain	8.065	2.12E-10	FAS, FASLG, CASP8, DAPK1, NOS3, RAF1, TRADD,	FADD
	receptors [GO:1902042]			RIPK1, CFLAR	
3	extrinsic apoptotic signaling pathway via death domain receptors	7.258	2.98E-08	FAS, FASLG, BCL2, BID, CASP10, DAPK1, TRADD	BAD,
	[GO:0008625]				FADD
4	regulation of extrinsic apoptotic signaling pathway via death domain	5.645	1.78E-07	FAS, FASLG, CASP8, TRADD, RIPK1, CFLAR	FADD
	receptors [GO:1902041]				
5	membrane organization [GO:0061024]	6.452	2.14E-07	SFN, RALA, YWHAB, YWHAE, YWHAH, YWHAZ,	
				YWHAQ, TBC1D1	
6	activation of cysteine-type endopeptidase activity involved in apoptotic	4.839	2.08E-06	FAS, FASLG, CASP8, TRADD, RIPK1	FADD
	signaling pathway [GO:0097296]				
7	negative regulation of apoptotic process [GO:0043066]	13.710	4.05E-06	AKT1, FAS, BCL2, BCL2L1, BCL2L2, EGFR, MYD88,	FAIM
				RAF1, SLC9A1, TMBIM6, YWHAZ, ZNF16, LHX3,	
				CFLAR, SPRY2, FKBP8	

	GO Terms	%	FDRp	Human targets	Interactor
8	positive regulation of I-kappaB kinase/NF-kappaB signaling [GO:0043123]	8.871	9.95E-06	FASLG, RHOA, CASP8, CASP10, MYD88, UBE2I,	FADD
				TRADD, RIPK1, CFLAR, TRIM62	
9	regulation of apoptotic process [GO:0042981]	9.677	1.14E-05	ACTN2, FAS, BCL2L1, BCL2L2, BID, CASP8, CASP10,	FADD
				DAPK1, RAF1, CFLAR, MAGED1	
10	death-inducing signaling complex assembly [GO:0071550]	4.032	1.14E-05	CASP8, RAF1, TRADD, RIPK1	FADD
11	extrinsic apoptotic signaling pathway [GO:0097191]	5.645	2.41E-05	FAS, FASLG, CASP8, TRADD, RIPK1	BAD,
					FADD
12	cellular response to mechanical stimulus [GO:0071260]	6.452	2.66E-05	AKT1, FAS, CASP8, EGFR, MYD88, SLC9A1	BAD,
					FADD
13	apoptotic signaling pathway [GO:0097190]	6.452	2.66E-05	FAS, FASLG, CASP8, CASP10, DAPK1, DAP3, RIPK1	FADD
14	apoptotic process [GO:0006915]	13.710	4.06E-05	FAS, FASLG, BCL2, CASP8, CASP10, DAPK1, MYD88,	BAD,
				RAF1, RALB, DAP3, TRADD, RIPK1, CFLAR, FKBP8	FADD,
					FAIM
15	activation of cysteine-type endopeptidase activity involved in apoptotic	6.452	6.78E-05	FAS, FASLG, BID, CASP8, TRADD, RIPK1	BAD,
	process [GO:0006919]				FADD
16	extrinsic apoptotic signaling pathway in absence of ligand [GO:0097192]	4.839	1.52E-04	FAS, BCL2, BCL2L1, BCL2L2	BAD,
					FADD
17	necroptotic signaling pathway [GO:0097527]	3.226	3.15E-04	FAS, FASLG, RIPK1	FADD
18	release of cytochrome c from mitochondria [GO:0001836]	4.032	7.47E-04	BCL2, BCL2L1, BID, SFN	BAD
19	substantia nigra development [GO:0021762]	4.839	8.14E-04	RHOA, PLP1, YWHAE, YWHAH, YWHAQ	CALM1

	GO Terms	%	FDRp	Human targets	Interactor
20	viral process [GO:0016032]	8.871	1.08E-03	RHOA, ATP6V0C, H2AFX, RALA, TSC2, UBE2I,	
				YWHAB, YWHAE, CFLAR, CALCOCO2, FKBP8	
21	signal transduction [GO:0007165]	16.129	5.74E-03	AKT1, FAS, FASLG, DAPK1, EGFR, SFN, GRB7,	FADD,
				MYD88, RAF1, RALA, RALB, YWHAZ, TRADD, HGS,	AGRN,
				AKAP9, DAPP1, TRIM54, IQGAP3	AGRN
22	positive regulation of apoptotic process [GO:0043065]	8.065	5.98E-03	AKT1, FAS, FASLG, BCL2L1, BID, SLC9A1, TRADD,	BAD,
				RIPK1	FADD
23	positive regulation of cell growth [GO:0030307]	4.839	9.14E-03	AKT1, BCL2, EGFR, SFN, SDCBP, SLC9A1	
24	intrinsic apoptotic signaling pathway in response to DNA damage	4.032	1.00E-02	BCL2, BCL2L1, BCL2L2, SFN	BAD
	[GO:0008630]				
25	regulation of nitric-oxide synthase activity [GO:0050999]	3.226	2.54E-02	AKT1, EGFR, NOS3	CALM1
26	protein heterooligomerization [GO:0051291]	4.032	3.62E-02	CASP8, YWHAB, TRADD, RIPK1	FADD
27	positive regulation of peptidyl-serine phosphorylation [GO:0033138]	4.032	3.96E-02	AKT1, BCL2, RAF1, AKAP9, SPRY2	
28	Ras protein signal transduction [GO:0007265]	4.032	3.96E-02	KRAS, RALA, RALB, SDCBP, IQGAP3	
29	positive regulation of intrinsic apoptotic signaling pathway [GO:2001244]	3.226	4.45E-02	BCL2, BCL2L1, BID	BAD

FDRp - False discovery rate adjusted p-value; % - Percentage of proteins

Table S.5. Enriched biological processes affected by the potential interactors from the skin of *Glycera alba* and their human targets. The interactors were the human homologs of the proteins up-regulated in the skin. The FDR-adjusted p < 0.05 was set as the cut-off. The GO enrichment analysis was performed in the Database for Annotation, Visualization and Integrated Discovery (DAVID).

	GO Terms	%	FDRp	Human targets	Interactor
1	leukocyte migration [GO:0050900]	12.963	7.88E-04	GRB2, PIK3R1, PLCG1, TEK	ANGPT1,
					ANGPT2,
					MIF, MIF
2	JAK-STAT cascade [GO:0007259]	9.259	7.88E-04	STAT5A, STAT5B, SOCS1, SOCS3	JAK2
3	Tie signaling pathway [GO:0048014]	5.556	4.84E-03	ТЕК	ANGPT1,
					ANGPT2
4	viral process [GO:0016032]	14.815	4.84E-03	DAXX, E4F1, GRB2, PIK3R1, PLCG1, SUV39H1,	
				VCAM1, BTRC	
5	glomerulus vasculature development [GO:0072012]	5.556	6.68E-03	TEK	ANGPT1,
					ANGPT2
6	cell proliferation [GO:0008283]	14.815	1.15E-02	E4F1, EGFR, ELN, MPL, GFI1B, PRMT5, KDM1A	MIF, MIF

FDRp – False discovery rate adjusted p-value; % – Percentage of proteins

Table S.6. Enriched biological processes affected by the potential interactors from the glands of *Hediste diversicolor* and their human targets. The interactors were the human homologs of the proteins up-regulated in the glands. The FDR-adjusted p < 0.05 was set as the cut-off. The GO enrichment analysis was performed in the Database for Annotation, Visualization and Integrated Discovery (DAVID).

	GO Terms	%	FDRp	Target	Interactor
1	peptide cross-linking [GO:0018149]	5.495	3.80E-12	FN1, LCE2B, CRCT1, LCE4A, LCE5A, LCE1A, LCE1B,	
				LCE1C, LCE1D, LCE1E, LCE1F, LCE2D, LCE3A, LCE3C,	
				LCE3E	
2	keratinocyte differentiation [GO:0030216]	6.227	3.80E-12	CASP3, STK4, LCE2B, CRCT1, SAV1, LCE4A, LCE5A,	
				LCE1A, LCE1B, LCE1C, LCE1D, LCE1E, LCE1F, LCE2D,	
				LCE3A, LCE3C, LCE3E	
3	keratinization [GO:0031424]	4.762	7.75E-10	LCE2B, LCE4A, LCE5A, LCE1A, LCE1B, LCE1C, LCE1D,	
				LCE1E, LCE1F, LCE2D, LCE3A, LCE3C, LCE3E	
4	hippo signaling [GO:0035329]	2.564	5.52E-04	CASP3, STK4, AMOTL2, SAV1, MOB1B, AMOT	STK3, STK3
5	signal transduction by protein phosphorylation	2.930	6.33E-04	BMPR1A, BMPR1B, BMPR2, STK4, CAB39	STK3, STK3, STK25,
	[GO:0023014]				STK26, STK26
6	protein stabilization [GO:0050821]	4.396	7.07E-04	HSPA1A, HSPA1B, HSPD1, STK4, RASSF2, CDC37,	HIP1, STK3, STK3
				RASSF1, PDCD10, NLK, SAV1	
7	positive regulation of I-kappaB kinase/NF-kappaB	4.396	3.07E-03	ECM1, IRAK1, MYD88, REL, TNFRSF1A, IKBKG, LITAF,	IRAK4
	signaling [GO:0043123]			ZDHHC17, PELI2, PELI1, TIRAP	

	GO Terms	%	FDR <i>p</i>	Target	Interactor
8	signal transduction [GO:0007165]	12.821	4.36E-03	ECM1, EGFR, ERBB2, GRB14, HRAS, IRAK1, MYD88,	GRN, GRN, LHB,
				PDGFRB, PRKCZ, RAP2B, CXCL5, SHC1, STK4, THBD,	SORL1, STK3, STK3,
				TNFRSF1A, TRAF1, TRAF2, BTRC, PSTPIP1, HGS,	AKT3, STK25, IRAK4,
				LITAF, ZDHHC17, RPS6KA6, SAV1, RASSF4, LINGO1,	AGRN, AGRN, AGRN,
				TIRAP	AGRN
9	cellular response to BMP stimulus [GO:0071773]	2.198	8.45E-03	BMPR1A, BMPR1B, BMPR2, SMAD4, SPINT1	BMP2
10	response to hydrogen peroxide [GO:0042542]	2.564	1.02E-02	CASP3, HSPD1, PDGFRB, PDCD10	CAT, STK25, STK26,
					STK26
11	extracellular matrix organization [GO:0030198]	4.396	1.17E-02	APP, ELN, FN1, HSPG2, LOX, LOXL1, MFAP2, SPINT1	FBLN1, FBN1, FBN1,
					FBLN5, AGRN, AGRN,
					AGRN, AGRN
12	positive regulation of NF-kappaB transcription factor	3.663	1.17E-02	HSPA1A, HSPA1B, IRAK1, MYD88, PRKCZ, TRAF1,	CAT
	activity [GO:0051092]			TRAF2, IKBKG, TIRAP	
13	positive regulation of MAP kinase activity [GO:0043406]	2.564	1.79E-02	EGFR, ERBB2, HRAS, IRAK1, PDGFRB, MAGED1,	
				PDCD10	
14	protein phosphorylation [GO:0006468]	6.593	2.13E-02	APP, BMPR1A, BMPR1B, ERBB2, IRAK1, SMAD2,	BMP2, STK3, STK3,
				PRKCZ, STK4, RASSF2, RPS6KA6, NLK, TRIB3, HIPK1	AKT3, STK25, STK26,
					STK26

GO Terms	%	FDRp	Target	Interactor
cellular protein metabolic process [GO:0044267]	3.297	2.26E-02	APP, HSPG2, MMP2, SFTPD, GGA2, GGA1, SFTPA1	DMBT1, DMBT1,
				DMBT1, DMBT1,
				DMBT1, PLG, PLG
	GO Terms cellular protein metabolic process [GO:0044267]	GO Terms % cellular protein metabolic process [GO:0044267] 3.297	GO Terms%FDRpcellular protein metabolic process [GO:0044267]3.2972.26E-02	GO Terms%FDRpTargetcellular protein metabolic process [GO:0044267]3.2972.26E-02APP, HSPG2, MMP2, SFTPD, GGA2, GGA1, SFTPA1

FDRp – False discovery rate adjusted p-value; % – Percentage of proteins

Table S.7. Enriched biological processes affected by potential interactors from the proboscis of *Hediste diversicolor* and their human targets. The interactors were the human homologs of the proteins up-regulated in the proboscis. The FDR-adjusted p < 0.05 was set as the cut-off. The GO enrichment analysis was performed in the Database for Annotation, Visualization and Integrated Discovery (DAVID).

	GO Terms	%	FDRp	Target	Interactor
1	regulation of gene silencing [GO:0060968]	2.8169	2.58E-11	HIST1H3A, HIST1H3D, HIST1H3C, HIST1H3E, HIST1H3I,	
				HIST1H3G, HIST1H3J, HIST1H3H, HIST1H3B, HIST1H3F	
2	DNA replication-dependent nucleosome assembly	3.0986	1.97E-07	HIST1H3A, HIST1H3D, HIST1H3C, HIST1H3E, HIST1H3I,	
	[GO:0006335]			HIST1H3G, HIST1H3J, HIST1H3H, HIST1H3B, HIST1H3F,	
				CHAF1A	
3	cellular protein metabolic process [GO:0044267]	4.7887	4.00E-07	APP, FGA, MMP2, SFTPD, UBC, HIST1H3A, HIST1H3D,	DMBT1, DMBT1
				HIST1H3C, HIST1H3E, HIST1H3I, HIST1H3G, HIST1H3J,	
				HIST1H3H, HIST1H3B, HIST1H3F, SFTPA1	
4	telomere organization [GO:0032200]	2.8169	4.25E-07	HIST1H3A, HIST1H3D, HIST1H3C, HIST1H3E, HIST1H3I,	
				HIST1H3G, HIST1H3J, HIST1H3H, HIST1H3B, HIST1H3F	
5	chromatin silencing at rDNA [GO:0000183]	2.8169	7.66E-06	HIST1H3A, HIST1H3D, HIST1H3C, HIST1H3E, HIST1H3I,	
				HIST1H3G, HIST1H3J, HIST1H3H, HIST1H3B, HIST1H3F	
6	negative regulation of gene expression, epigenetic	3.0986	7.79E-06	TRIM27, HIST1H3A, HIST1H3D, HIST1H3C, HIST1H3E,	
	[GO:0045814]			HIST1H3I, HIST1H3G, HIST1H3J, HIST1H3H, HIST1H3B,	
				HIST1H3F	

	GO Terms	%	FDRp	Target	Interactor
7	regulation of tumor necrosis factor-mediated signaling	2.5352	1.57E-05	TNFAIP3, TRAF1, TRAF2, UBC, IKBKG, MADD, RNF31,	OTULIN, OTULIN,
	pathway [GO:0010803]			HIPK1	OTULIN, OTULIN
8	protein heterotetramerization [GO:0051290]	2.8169	1.58E-05	HIST1H3A, HIST1H3D, HIST1H3C, HIST1H3E, HIST1H3I,	
				HIST1H3G, HIST1H3J, HIST1H3H, HIST1H3B, HIST1H3F	
9	MAPK cascade [GO:0000165]	5.6338	1.10E-04	ARAF, CALM2, CALM3, EGFR, HRAS, KRAS, MARK3,	ACTN2, CALM1,
				MAP3K5, MOS, PPP5C, MAPK1, MAPK3, PSMA1,	CALM1, CALM1,
				PSMC5, RAF1, UBC, AKAP9, LRRK2	CALM1, CALM1,
					CALM1, CALM1,
					CALM1, CALM1
10	muscle contraction [GO:0006936]	3.6620	1.45E-04	ACTN3, CALM2, CALM3, CRYAB, MYLK, TPM4, TTN,	CALM1, CALM1,
				DYSF, MYOM2, MYOT, TRIM63	CALM1, CALM1,
					CALM1, CALM1,
					CALM1, CALM1,
					CALM1, TPM1
11	response to calcium ion [GO:0051592]	2.8169	2.12E-04	AANAT, BAD, CALM2, CALM3, EGFR, FGA, TTN,	CALM1, CALM1,
				PDCD6	CALM1, CALM1,
					CALM1, CALM1,
					CALM1, CALM1,
					CALM1, SPARC,
					SPARC

	GO Terms	%	FDRp	Target	Interactor
12	positive regulation of gene expression, epigenetic	2.8169	3.46E-04	HIST1H3A, HIST1H3D, HIST1H3C, HIST1H3E, HIST1H3I,	
	[GO:0045815]			HIST1H3G, HIST1H3J, HIST1H3H, HIST1H3B, HIST1H3F	
13	positive regulation of protein serine/threonine kinase	2.2535	4.88E-04	CALM2, CALM3, RALB, STK3, STK4, CDK5R1, PDCD10	CALM1, CALM1,
	activity [GO:0071902]				CALM1, CALM1,
					CALM1, CALM1,
					CALM1, CALM1,
					CALM1
14	cell-cell adhesion [GO:0098609]	5.3521	4.88E-04	CBL, MARK2, ENO1, GOLGA2, SDCBP, YWHAE,	PKM, PKM, YWHAZ
				HIST1H3A, HIST1H3D, HIST1H3C, HIST1H3E, HIST1H3I,	
				HIST1H3G, HIST1H3J, HIST1H3H, HIST1H3B, HIST1H3F,	
				PDLIM1	
15	peptide cross-linking [GO:0018149]	2.5352	4.88E-04	COL3A1, FN1, LCE3D, LCE5A, LCE1A, LCE1B, LCE1C,	
				LCE1F, LCE3A	
16	protein phosphorylation [GO:0006468]	7.0423	6.33E-04	APP, CDC25B, CTBP1, MARK2, ILK, LIMK1, MAP3K5,	DAPK1, AATK, AATK,
				MYLK, CDK16, PRKAB2, PRKCE, MAPK1, MAPK3,	STK25
				RAF1, STK3, STK4, PICK1, RASSF2, MAP3K20, LRRK2,	
				HIPK1, SBK3	
17	hippo signaling [GO:0035329]	1.9718	1.01E-03	DVL2, STK3, STK4, YWHAE, YAP1, WWTR1, AMOTL2	

	GO Terms	%	FDRp	Target	Interactor
18	blood coagulation [GO:0007596]	4.2254	1.01E-03	FGA, GP1BA, GP1BB, HIST1H3A, HIST1H3D, HIST1H3C,	
				HIST1H3E, HIST1H3I, HIST1H3G, HIST1H3J, HIST1H3H,	
				HIST1H3B, HIST1H3F, BLOC1S6, AK3	
19	G2/M transition of mitotic cell cycle [GO:0000086]	3.6620	1.01E-03	CALM2, CALM3, CDC25A, CDC25B, TPD52L1, UBC,	CALM1, CALM1,
				WEE1, YWHAE, BTRC, CCP110, AKAP9, CEP70	CALM1, CALM1,
					CALM1, CALM1,
					CALM1, CALM1,
					CALM1
20	circadian regulation of gene expression [GO:0032922]	2.5352	1.01E-03	PER1, PPARA, PPP1CA, PPP1CC, PER2, USP2, MAGED1,	CRY2
				PRMT5	
21	keratinocyte differentiation [GO:0030216]	2.8169	1.11E-03	NOTCH1, STK4, YAP1, LCE3D, LCE5A, LCE1A, LCE1B,	
				LCE1C, LCE1F, LCE3A	
22	wound healing [GO:0042060]	2.8169	1.61E-03	COL3A1, EGFR, FN1, TNC, MAP3K5, PPARA, RAF1	SPARC, SPARC, TFF2,
					TPM1
23	negative regulation of extrinsic apoptotic signaling	1.9718	2.56E-03	FGA, NOS3, RAF1, TNFAIP3, TRAF2, FADD	DAPK1
	pathway via death domain receptors [GO:1902042]				
24	regulation of circadian rhythm [GO:0042752]	2.2535	2.71E-03	PER1, PPARA, PPP1CA, PPP1CC, PER2, BTRC, MAGED1	CRY2
25	positive regulation of protein autophosphorylation	1.6901	2.83E-03	CALM2, CALM3, RAP2A, RAP2B, RASSF2	CALM1, CALM1,
	[GO:0031954]				CALM1, CALM1,
					CALM1, CALM1,

	GO Terms	%	FDRp	Target	Interactor
					CALM1, CALM1,
					CALM1
26	nucleosome assembly [GO:0006334]	3.0986	6.01E-03	H2AFX, HIST1H3A, HIST1H3D, HIST1H3C, HIST1H3E,	
				HIST1H3I, HIST1H3G, HIST1H3J, HIST1H3H, HIST1H3B,	
				HIST1H3F	
27	response to hypoxia [GO:0001666]	3.6620	7.02E-03	ANG, BAD, CRYAB, KCNA5, SMAD4, MMP2, NOS2,	РКМ, РКМ
				PPARA, RAF1, TH, VCAM1, PDLIM1	
28	regulation of nitric-oxide synthase activity [GO:0050999]	1.6901	7.56E-03	CALM2, CALM3, EGFR, GCH1, NOS3	CALM1, CALM1,
					CALM1, CALM1,
					CALM1, CALM1,
					CALM1, CALM1,
					CALM1
29	positive regulation of MAP kinase activity [GO:0043406]	2.2535	7.60E-03	EGFR, HRAS, ILK, KRAS, TPD52L1, MAGED1, PDCD10,	
				LRRK2	
30	positive regulation of epithelial cell proliferation	2.2535	8.18E-03	BAD, EGFR, HRAS, LAMC1, NOTCH1, SCN5A, NR4A3	LAMB1, LAMB1,
	[GO:0050679]				LAMB1, LAMB1

	GO Terms	%	FDRp	Target	Interactor
31	platelet degranulation [GO:0002576]	2.8169	8.53E-03	APP, CALM2, CALM3, FGA, FN1, TTN	ACTN2, CALM1,
					CALM1, CALM1,
					CALM1, CALM1,
					CALM1, CALM1,
					CALM1, CALM1,
					ITIH4, SPARC, SPARC
32	positive regulation of cell migration [GO:0030335]	3.6620	1.12E-02	EGFR, GRB7, HRAS, ILK, MYLK, NOTCH1, MAPK1,	LAMB1, LAMB1,
				SDCBP, SNAI1, PDCD10, COL18A1, WASHC1	LAMB1, LAMB1
33	positive regulation of axon extension [GO:0045773]	1.6901	1.31E-02	FN1, ILK, LIMK1, MAPT, DISC1	NTN1, NTN1
34	gene silencing by RNA [GO:0031047]	2.8169	1.38E-02	HIST1H3A, HIST1H3D, HIST1H3C, HIST1H3E, HIST1H3I,	
				HIST1H3G, HIST1H3J, HIST1H3H, HIST1H3B, HIST1H3F	
35	keratinization [GO:0031424]	1.9718	1.47E-02	LCE3D, LCE5A, LCE1A, LCE1B, LCE1C, LCE1F, LCE3A	
36	angiogenesis [GO:0001525]	3.9437	1.61E-02	ANG, COL8A1, FN1, MEOX2, MMP2, MYH9, NOS3, NOV,	EGFL7
				WNT7A, PDCD6, PDCD10, COL18A1, UNC5B	
37	response to corticosterone [GO:0051412]	1.4085	1.61E-02	AANAT, CALM2, CALM3, TH	CALM1, CALM1,
					CALM1, CALM1,
					CALM1, CALM1,
					CALM1, CALM1,
					CALM1

	GO Terms	%	FDRp	Target	Interactor
38	platelet activation [GO:0030168]	2.8169	1.61E-02	COL3A1, FGA, GP1BA, GP1BB, PRKCE, MAPK1,	YWHAZ
				MAPK3, RAF1, RAP2B	
39	extracellular matrix organization [GO:0030198]	3.6620	1.65E-02	APP, COL3A1, COL8A1, FGA, FN1, TNC, LAMC1,	FBLN1, LAMB1,
				VCAM1, COL18A1	LAMB1, LAMB1,
					LAMB1, SPARC,
					SPARC, AGRN, AGRN,
					AGRN, AGRN
40	microtubule cytoskeleton organization [GO:0000226]	2.2535	1.78E-02	MARK2, MAPT, MARK3, MID1, ATXN7, WEE1, DISC1,	
				MAP1S	
41	entrainment of circadian clock by photoperiod	1.4085	2.26E-02	PER1, PPP1CA, PPP1CC, USP2	CRY2
	[GO:0043153]				
42	viral process [GO:0016032]	4.5070	2.42E-02	ATP6V0C, H2AFX, MDM2, MAP3K5, MAPK1, MAPK3,	FBLN1
				RALA, SP1, SP100, TSC2, VCAM1, YWHAE, BTRC,	
				CALCOCO2, FKBP8	
43	Fc-epsilon receptor signaling pathway [GO:0038095]	3.3803	2.42E-02	CALM2, CALM3, HRAS, KRAS, MAPK1, MAPK3,	CALM1, CALM1,
				PSMA1, PSMC5, UBC, IKBKG, BTRC	CALM1, CALM1,
					CALM1, CALM1,
					CALM1, CALM1,
					CALM1

	GO Terms	%	FDRp	Target	Interactor
44	regulation of cell cycle [GO:0051726]	2.8169	2.42E-02	CDC25A, CTBP1, CDK16, TSC2, WEE1, MADD, PER2,	
				BTRC, COPS5, CCNDBP1	
45	positive regulation of protein dephosphorylation	1.4085	2.50E-02	CALM2, CALM3, PIN1, NSMF	CALM1, CALM1,
	[GO:0035307]				CALM1, CALM1,
					CALM1, CALM1,
					CALM1, CALM1,
					CALM1
46	cerebral cortex development [GO:0021987]	1.9718	2.62E-02	BAD, COL3A1, H2AFX, PAX5, TH, YWHAE	NPY
47	positive regulation of protein phosphorylation	2.8169	2.66E-02	DVL2, EGFR, HRAS, KRAS, PIN1, MAPK3, RALB,	
	[GO:0001934]			RAP2A, STK4, LRRK2	
48	negative regulation of protein binding [GO:0032091]	1.9718	2.66E-02	GOLGA2, PIN1, PPARA, PPP1CA, RALB, TMBIM6,	
				LRRK2	
49	muscle filament sliding [GO:0030049]	1.6901	2.66E-02	ACTN3, TNNT1, TPM4, TTN	ACTN2, TPM1
50	positive regulation of nitric-oxide synthase activity	1.4085	2.66E-02	CALM2, CALM3, GCH1, KRAS	CALM1, CALM1,
	[GO:0051000]				CALM1, CALM1,
					CALM1, CALM1,
					CALM1, CALM1,
					CALM1
51	regulation of cytokinesis [GO:0032465]	1.4085	2.66E-02	CALM2, CALM3, PIN1, CCP110	CALM1, CALM1,
					CALM1, CALM1,

	GO Terms	%	FDRp	Target	Interactor
					CALM1, CALM1,
					CALM1, CALM1,
					CALM1
52	stimulatory C-type lectin receptor signaling pathway	2.5352	2.97E-02	HRAS, KRAS, PSMA1, PSMC5, RAF1, UBC, IKBKG,	
	[GO:0002223]			BTRC, CLEC7A	
53	response to ethanol [GO:0045471]	2.5352	2.97E-02	BAD, CBL, HTR1B, TNC, TBXA2R, TH, VCAM1	AVP, SPARC, SPARC
54	axon guidance [GO:0007411]	3.0986	3.03E-02	HRAS, KRAS, SMAD4, MAPK1, MAPK3, NR4A3,	NTN1, NTN1, SPON2
				CDK5R1, ZNF280A, DRAXIN	
55	negative regulation of neuron death [GO:1901215]	1.6901	3.11E-02	PPARA, PPP5C, REL, TRAF2, IKBKG, LRRK2	
56	platelet aggregation [GO:0070527]	1.6901	3.35E-02	FGA, GP1BA, HSPB1, ILK, MYH9, RAP2B	
57	signal transduction [GO:0007165]	10.7042	3.35E-02	EGFR, FGA, GRB7, HRAS, IL9R, LIMK1, PDE9A,	AVP, DAPK1, SPARC,
				PRKAB2, PRKCE, MAPK1, RAF1, RALA, RALB, RAP2B,	SPARC, YWHAZ,
				CXCL5, STK3, STK4, TRAF1, TRAF2, FADD, BTRC, HGS,	STK25, WIF1, SMOC1,
				AKAP9, APPL1, TRIM54, TRIM63, LINGO1, IQGAP3,	SMOC1, SMOC1,
				UNC5B, RASSF10	AGRN, AGRN, AGRN,
					AGRN
58	neuron death [GO:0070997]	1.1268	3.35E-02	CBL, MEOX2, SLC9A1, LRRK2	
59	endocardium development [GO:0003157]	0.8451	3.51E-02	NOTCH1, STK3, STK4	
60	positive regulation of cyclic nucleotide metabolic process	0.8451	3.51E-02	CALM2, CALM3	CALM1, CALM1,
	[GO:0030801]				CALM1, CALM1,

	GO Terms	%	FDR <i>p</i>	Target	Interactor
					CALM1, CALM1,
					CALM1, CALM1,
					CALM1
61	positive regulation of cell proliferation [GO:0008284]	5.6338	4.06E-02	CDC25B, EGFR, FN1, HRAS, TNC, ILK, KRAS, MDM2,	AVP, NTN1, NTN1
				NOTCH1, MAPK1, CXCL5, SDCBP, HDAC4, YAP1,	
				PDCD10, WWTR1, COL18A1, HIPK1	
62	positive regulation of JNK cascade [GO:0046330]	1.9718	4.30E-02	HRAS, MAP3K5, SDCBP, STK3, TPD52L1, WNT7A,	
				RASSF2	
				RASSF2	

FDRp - False discovery rate adjusted p-value; % - Percentage of proteins