Supporting information for:

Nitrogen-embedded molecular bowls as electron donors in photoinduced electron transfer reactions

A. J. Stasyuk, *a,b O. A. Stasyuk, a,b M. Solà*a and A. A. Voityuk*a

a. Institut de Química Computacional and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain

b. Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

Abstract

In recent years, the chemistry of curved π -conjugated molecules has experienced a sharp rise. The inclusion of a heteroatom in the carbon network significantly affects its semiconducting properties. In this work, we computationally study the photoinduced electron transfer in a series of C60 fullerene complexes with experimentally established nitrogen-doped molecular bowls. Our results demonstrate that introducing nitrogen into pentagonal rings of the bowl-shaped π -conjugated molecules and extending the π -conjugation can modulate their electron-transfer properties. Among the studied complexes, the hub-NCor \supset C60 complex exhibits the most desirable combination of ultrafast charge separation and slow charge recombination, suggesting its potential use in photovoltaics.

Table of Contents

Computational methodology	p. S3-S7
Table S1. HOMO/LUMO energies and HOMO-LUMO (HL) gap for studied bowls in equilibrium and complex geometries.	p. S8
Table S2. Charge separation between the fragments in electronic ground state for studied complexes.	p. S8-S9
Table S3. Parameters of selected bond critical points related to the non-covalent interactions of the fragments in studied complexes.	p. S9-S11
Table S4. Main contributions of the Kohn-Sham molecular orbitals to the corresponding occupied and vacant natural transition orbitals.	p. S11
Table S5. Excitation energies, main singly excited configuration (HOMO(H)-LUMO(L)) and its weight, oscillator strength, extent of charge transfer or localization of exciton computed for studied complexes in DCM.	p. S12
Table S6. Relative energies and solvation energies calculated for studiedcomplexes in DCM.	p. S12-S13
Table S7. ET rates computed with different effective Huang-Rhys factors for $Cor \supset C_{60}$, $Sum \supset C_{60}$ and <i>hub</i> -NCor $\supset C_{60}$, complexes.	p. S13
Figure S1. QTAIM molecular graphs for studied complexes.	p. S14
Figure S2. Plot of RDG <i>vs.</i> sign($\lambda 2$)× ρ for studied complexes.	p. S15
Figure S3. NCI isosurfaces of van der Waals interactions in studied complexes.	p. S16
Figure S4-S11. Natural transition orbitals for studied complexes	p. S17-S24
Figure S12. Dependence of the charge separation rate in the $Cor \supset C_{60}$, $Sum \supset C_{60}$	p. S25
and hub-NCor$\supset C_{60}$ complexes on the effective frequency.	
Cartesian coordinates	p. S26-S31
References	p. S34-S35
	Computational methodology Table S1. HOMO/LUMO energies and HOMO-LUMO (HL) gap for studied bowls in equilibrium and complex geometries. Table S2. Charge separation between the fragments in electronic ground state for studied complexes. Table S3. Parameters of selected bond critical points related to the non-covalent interactions of the fragments in studied complexes. Table S4. Main contributions of the Kohn-Sham molecular orbitals to the corresponding occupied and vacant natural transition orbitals. Table S5. Excitation energies, main singly excited configuration (HOMO(H)- LUMO(L)) and its weight, oscillator strength, extent of charge transfer or localization of exciton computed for studied complexes in DCM. Table S6. Relative energies and solvation energies calculated for studied complexes in DCM. Table S7. ET rates computed with different effective Huang-Rhys factors for $Cor\supset C_{60}$, $Sum\supseteq C_{60}$ and $hub-NCor\supset C_{60}$, complexes. Figure S1. QTAIM molecular graphs for studied complexes. Figure S2. Plot of RDG vs. $sign(\lambda 2) \times p$ for studied complexes. Figure S4-S11. Natural transition orbitals for studied complexes Figure S12. Dependence of the charge separation rate in the $Cor\supset C_{60}$, $Sum\supseteq C_{60}$ and $hub-NCor\supset C_{60}$ complexes on the effective frequency. Cartesian coordinates References

Computational Methodology

Quantum-chemical calculations

Geometry optimization of the complexes was performed employing the DFT B3LYP¹⁻³ exchange–correlation functional with Ahlrichs' def2-SVP basis set.^{4,5} The empirical dispersion D3 correction was computed using the Becke–Johnson damping.^{6,7} Vertical excitation energies were calculated using TDA formalism⁸ with the range-separated functional from Handy and coworkers' CAM-B3LYP⁹ and Ahlrichs' def2-SVP basis set,^{4,5} as implemented in the Gaussian16 (rev. A03) program.¹⁰ The same program was used for population analysis and calculation of Mulliken,^{11,12} Lowdin,¹³ Hirshfeld,¹⁴ CM5,¹⁵ and iterative Hirshfeld¹⁶ charges. The formation energy of the complexes was computed using B3LYP functional coupled with def2-TZVP basis¹⁷ (B3LYP(D3BJ)/def2-TZVP//B3LYP(D3BJ)/def2-SVP). Canonical energy decomposition analysis (EDA) was performed using the Amsterdam Density Functional (ADF) program.¹⁸ The excited states have been analyzed in terms of the natural transition orbitals (NTO) concept introduced by Luzanov *et al.*¹⁹ and implemented within modern many-body codes by Head-Gordon *et al.*²⁰ Molecular structures and frontier molecular orbitals were visualized by Chemcraft 1.8. program.²¹

Energy decomposition analysis

The interaction energy in the gas phase was examined in the framework of the Kohn-Sham MO model using a quantitative energy decomposition analysis (EDA)²²⁻²⁴ into electrostatic interactions, Pauli repulsive orbital interactions, and attractive orbital interactions, to which a term ΔE_{disp} is added to account for the dispersion correction:

$$\Delta E_{\rm int} = \Delta E_{elstat} + \Delta E_{Pauli} + \Delta E_{oi} + \Delta E_{disp} \tag{1}$$

The term ΔV_{elstat} corresponds to the classical electrostatic interactions between the unperturbed charge distributions of the prepared (i.e. deformed) fragments and is usually attractive. The Pauli repulsion, ΔE_{Paulii} comprises the destabilizing interactions between occupied orbitals and is responsible for any steric repulsion. The orbital interactions, ΔE_{oi} , account for electron-pair bonding, charge transfer (*i.e.*, donor-acceptor interactions between occupied orbitals on one moiety and unoccupied orbitals on the other, including HOMO-LUMO interactions) and polarization (empty-occupied orbital mixing on one fragment due to the presence of another fragment). The term ΔE_{disp} accounts for the dispersion corrections.^{25,26}

Analysis of excited states

The quantitative analysis of exciton delocalization and charge transfer in the donor-acceptor complexes was carried out in terms of the transition density.²⁷⁻²⁹ The analysis was done in the Löwdin orthogonalized basis, which is more convenient.. The matrix ${}^{\lambda}$ **C** of orthogonalized MO coefficients is obtained from the coefficients **C** in the original basis ${}^{\lambda}$ **C** = **S**^{1/2} **C**, where **S** is the atomic orbital overlap matrix. The transition density matrix T⁰ for an excited state Φ^* constructed as a superposition of singly excited configurations (where an occupied MO ψ_i is replaced a virtual MO ψ_a) is computed,

$$T_{\alpha\beta}^{0i} = \sum_{ia} A_{i\to a}{}^{\lambda} C_{\alpha i}{}^{\lambda} C_{\beta a}$$
⁽²⁾

where $A_{i \rightarrow a}$. is the expansion coefficient.

A key quantity Ω (D,A) is determined by:

$$\Omega(\mathbf{D},\mathbf{A}) = \sum_{\alpha \in \mathbf{D}, \beta \in \mathbf{A}} \left(T_{\alpha\beta}^{0i} \right)^2$$
(3)

The weights of local excitations on D and A are $\Omega(D,D)$ and $\Omega(A,A)$. The weight of electron transfer configurations D \rightarrow A and A \rightarrow D is represented by $\Omega(D,A)$ and $\Omega(A,D)$, respectively. The index Δq , which describes charge separation and charge transfer between D and A, is

$$\Delta q(CS) = \sum \Omega(D, A) - \Omega(A, D)$$
(4)

$$\Delta q(CT) = \sum \Omega(D, A) + \Omega(A, D)$$
(5)

Solvent Effects

The equilibrium solvation energy E_s^{eq} of a molecule (in the ground or excited state) in the medium with the dielectric constant ϵ was estimated using a COSMO-like polarizable continuum model³⁰⁻³³ in the monopole approximation:

$$E_{s}^{eq}(Q,\varepsilon) = -\frac{1}{2}f(\varepsilon)Q^{+}DQ$$
(6)

where the $f(\varepsilon)$ is the dielectric scaling factor, $f(\varepsilon) = \frac{\varepsilon - 1}{\varepsilon}$, **Q** -the vector of *n* atomic charges in the molecular system, **D** is the *n* x *n* symmetric matrix determined by the shape of the boundary surface between solute and solvent. **D=B+A-1B**, where the *m* x *m* matrix **A** describes electrostatic interaction between *m* surface charges and the *m* x *n* **B** matrix describes the interaction of the surface charges with *n* atomic charges of the solute.^{30,34} The GEPOL93 scheme³⁵ was used to construct the molecular boundary surface.

The charge on atom X in the excited state Φ_{i} , q_{X}^{i} , was calculated as:

$$q_{\rm X}^{\rm i} = q_{\rm X}^{\rm 0} + \Delta_{\rm X}^{\rm i}, \quad \Delta_{\rm X}^{\rm i} = \sum_{\rm Y \neq \rm X} \sum_{\alpha \in {\rm X}, \, \beta \in {\rm Y}} \left(T_{\alpha\beta}^{\rm 0i} T_{\alpha\beta}^{\rm 0i} - T_{\beta\alpha}^{\rm 0i} T_{\beta\alpha}^{\rm 0i} \right), \tag{7}$$

where q_X^0 is the atomic charge on A in the ground state and Δ_X^i is its change due to the redistribution of the electron density between the atoms X and the rest of atoms Y which is caused by the excitation $\psi_0 \rightarrow \psi_i$.

The non-equilibrium solvation energy for excited state ψ_i can be estimated as:³⁶

$$E_{\rm S}^{\rm neq}(Q^0,\Delta,\varepsilon,n^2) = f(\varepsilon)\Delta^+ DQ^0 - \frac{1}{2}f(n^2)\Delta^+ D\Delta, \qquad (8)$$

In Eq. (8), n^2 (the refraction index squared) is the optical dielectric constant of the medium and the vector Δ describes the change of atomic charges in the molecule by excitation in terms of atomic charges, see Eq. (7). By definition, the external (solvent) reorganization energy is the difference of the non-equilibrium (Eq. 8) and equilibrium (Eq. 6) solvation energies of the excited state.

Electron transfer rates

The rate of the nonadiabatic electron transfer (ET), k_{ET} , can be expressed in terms of the electronic coupling squared, V^2 , and the Franck-Condon Weighted Density of states (FCWD):

$$k_{ET} = \frac{2\pi}{\hbar} V^2 \left(FCWD \right) \tag{9}$$

that accounts for the overlap of vibrational states of donor and acceptor and can be approximately estimated using the classical Marcus equation:³⁷

$$(FCWD) = (4\pi\lambda kT)^{-1/2} \exp\left[-(\Delta G^0 + \lambda)^2/4\lambda kT\right]$$
(10)

where λ is the reorganization energy and ΔG^0 is the standard Gibbs energy change of the process. The fragment charge difference (FCD)^{38,39} method was employed to calculate the electronic couplings in this work.

The Marcus expression is derived for the high-temperature condition, $\hbar\omega_l \ll kT$, for all vibrational modes *I*. The semi-classical description of ET^{40,41} includes the effect of the quantum vibrational modes in an effective way, the solvent (low frequency) modes are treated classically, while a single high-frequency intramolecular mode ω_i , $\hbar\omega_i \gg kT$, is described quantum mechanically. Because ET occurs normally from the lowest vibrational level of the initial state, the rate *k* can be expressed as a sum over all channels connecting the initial state with the vibrational quantum number n = 0 to manifold vibrational levels of the final state,

$$k = \sum_{n=0}^{\infty} k_{0 \to n} \text{ , where } k_{0 \to n} = \frac{2\pi}{h} V_{0 \to n}^2 \frac{1}{\sqrt{4\pi\lambda_s kT}} \exp\left[-\frac{\left(\Delta G + n\hbar\omega_i + \lambda_s\right)^2}{4\lambda_s kT}\right]$$
(11)

with

$$V_{0\to n}^2 = V^2 \frac{S^n}{n!} \exp\left(-S\right)$$
(12)

An effective value of the Huang-Rhys factor S is estimated from the internal reorganization energy λ_i , $S = \lambda_i / h\omega_i$ As seen, an additional parameter (as compared to the Marcus equation) enters the semi-classical expression - the frequency ω_i of a vibrational mode that effectively describes the nuclear intramolecular relaxation following the ET. Typically, in organic systems (including fullerene and nanotube derivatives) the main contribution to the internal reorganization energy is due to stretching of C=C bonds (the corresponding frequencies are found to be in the range 1400-1800 cm⁻¹). Thus, the effective frequency was set to 1600 cm⁻¹. We have demonstrated that varying the parameter ω_i within a reasonable range does not change significantly the computed ET rate (Table S4).

Reorganization energy

The reorganization energy is usually divided into two parts, $\lambda = \lambda_i + \lambda_s$, including the internal and solvent terms. The solvent reorganization energy corresponds to the energy required to move solvent molecules from the position they occupy in the initial state to the location they have in the CT state, but without charge transfer having occurred. The λ_s for a particular CT states was computed as a difference between the equilibrium (E^{eq}, see eq. 6) and non-equilibrium (E^{neq}, see eq. 8) solvation energies for states of interest. The internal reorganization energy λ_i corresponds to the energy of structural changes when donor/acceptor fragments going from initial-state geometries to final-state geometries.

$$\lambda_{i}^{1}(C_{60}^{*} \to C_{60}^{-}) = \frac{1}{2} \left[\left(\left(C_{60}^{*} \right)_{-} - \left(C_{60}^{*} \right)_{*} \right) + \left(\left(C_{60}^{-} \right)_{*} - \left(C_{60}^{-} \right)_{-} \right) \right] \\\lambda_{i}^{2}(Bowl^{0} \to Bowl^{+}) = \frac{1}{2} \left[\left(\left(Bowl^{0} \right)_{+} - \left(Bowl^{0} \right)_{0} \right) + \left(\left(Bowl^{+} \right)_{0} - \left(Bowl^{+} \right)_{+} \right) \right]$$

Activation energy

 $\lambda_i = \lambda_i^1 + \lambda_i^2$, where :

The activation energies or the electron transfer reaction were computed based on traditional Marcus theory and can be expressed as:

$$\Delta G^* = \left(\lambda + \Delta G^0\right)^2 / 4\lambda \tag{13}$$

Interaction energies

The interaction energies were calculated directly from the electronic energy of complex and electronic energies of subsystems. For Host $\supset C_{60}$, the interaction energy can be expressed as follows:

$$E_{\text{int}} = E_{Host \supset C_{60}} - (E_{Host} + E_{C_{60}})$$
(14)

Quantum Theory of Atoms in Molecules (QTAIM)

Topological analysis of the electron distributions was conducted using the "Quantum Theory of Atoms in Molecules" (QTAIM) approach proposed by Bader.^{42,43} Electron density properties measured at the bond critical point (BCP, saddle point on electron density curvature corresponding to a minimum in the direction of the atomic interaction line and a maximum in two perpendicular directions) give information about the character of different chemical bonds.⁴⁴⁻⁴⁶ The AIMALL suite of programs⁴⁷ was applied to evaluate

the BCP properties and the associated bond descriptors – the electron density $[\rho(r)]$ in BCPs, its Laplacian $[\nabla^2 \rho(r)]$, potential energy density [V(r)], kinetic energy density [G(r)], and total electron energy density [H(r)].

Non-covalent interactions (NCI)

The NCI method⁴⁸⁻⁵⁰ relies on two scalar fields to map local bonding properties: the electron density (ρ) and the reduced-density gradient (RDG, *s*), defined as:

$$s = \frac{1}{2(3\pi)^{1/3}} \frac{|\nabla\rho|}{\rho^{4/3}}$$
(15)

a quantity that is essential to the design of DFT functionals. The combination of *s* and ρ allows a rough partition of real space into bonding regions: high-*s* low- ρ corresponds to non-interacting density tails, low-*s* high- ρ to covalent bonds, and low-*s* low- ρ to non-covalent interactions. The NCI analysis was carried out at the CAM-B3LYP/Def2-SVP level using Multiwfn program.⁵¹

	Energy						
System		Litergy					
	НОМО	LUMO	HL gap ^{laj}				
		Bowl					
Cor	-7.57	-0.77	6.80				
<i>rim</i> -NCor	-7.24	-1.10	6.13				
hub-NCor	-6.16	-0.81	5.34				
PP-bowl	-5.81	-0.69	5.12				
Hyd-bowl	-5.98	-0.82	5.16				
Cyc-bowl	-7.14	-0.32	6.82				
<i>rim</i> -3NSum	-7.82	-0.69	7.13				
Sum	-6.98	0.12	7.10				
		Bowl⊃C ₆₀					
Cor⊃C ₆₀	-7.31	-2.56	4.75				
<i>rim</i> -NCor⊃C ₆₀	-7.28	-2.51	4.77				
hub-NCor⊃C ₆₀	-6.29	-2.47	3.82				
PP-bowl⊃C ₆₀	-5.97	-2.416	3.56				
Hyd-bowl⊃C₀₀	-6.14	-2.50	3.65				
Cyc-bowl⊃C ₆₀	-7.13	-2.54	4.59				
<i>rim</i> -3NSum⊃C ₆₀	-7.43	-2.63	4.80				
Sum⊃C ₆₀	-7.04	-2.61	4.43				

Table S1. HOMO/LUMO energies and HOMO-LUMO (HL) gap (in eV) for isolated bowls in equilibrium geometry and their complexes with fullerene computed at CAM-B3LYP-D3(BJ)/def2-SVP//B3LYP-D3(BJ)/def2-SVP level of theory.

^[a] The HL= E_{LUMO} - E_{HOMO}

Table S2. Charge separation (units are electrons) between the fragments in electronic ground state for $Cor \supset C_{60}$, *rim*-NCor $\supset C_{60}$, *hub*-NCor $\supset C_{60}$, PP-bowl $\supset C_{60}$, Hyd-bowl $\supset C_{60}$, Cyc-bowl $\supset C_{60}$, *rim*-3NSum $\supset C_{60}$, and Sum $\supset C_{60}$ complexes. Q_{Bowl} - charge on host, and $Q_{C_{60}}$ - charge on fullerene moiety. Total charge of the complexes $Q_{Tot} = 0$.

	Mulliken	Löwdin	Hirshfeld	CM5	Hirshfeld-Iter						
		Cor⊃C ₆₀									
$Q_{\scriptscriptstyle Bowl}$	0.028	0.025	-0.001	0.002	-0.070						
$\mathcal{Q}_{C_{60}}$	-0.028	-0.025	0.001	-0.002	0.070						
	<i>rim</i> -NCor⊃C ₆₀										
$Q_{\scriptscriptstyle Bowl}$	0.026	0.026	-0.002	-0.001	-0.082						
$\mathcal{Q}_{C_{60}}$	-0.026	-0.026	0.001	0.000	0.081						
	hub-NCor⊃C ₆₀										
$Q_{\scriptscriptstyle Bowl}$	0.025	0.035	0.004	0.005	-0.088						

$Q_{C_{60}}$	-0.025	-0.035	-0.004	-0.005	0.088				
			PP-bowl⊃C ₆₀						
$Q_{\scriptscriptstyle Bowl}$	0.025	0.037	0.007	0.004	-0.082				
$\mathcal{Q}_{C_{60}}$	-0.025	-0.037	-0.007	-0.004	0.082				
			Hyd-bowl⊃C ₆₀						
$Q_{\scriptscriptstyle Bowl}$	0.030	0.038	0.016	0.015	-0.059				
$\mathcal{Q}_{C_{60}}$	-0.030	-0.038	-0.015	-0.015	0.060				
	Cyc-bowl⊃C ₆₀								
$Q_{\scriptscriptstyle Bowl}$	0.034	0.034	0.006	0.009	-0.065				
$\mathcal{Q}_{C_{60}}$	-0.034	-0.034	-0.007	-0.009	0.065				
			<i>rim</i> -3NSum⊃C ₆₀						
$Q_{\scriptscriptstyle Bowl}$	0.020	0.000	-0.073	-0.071	-0.167				
$\mathcal{Q}_{C_{60}}$	-0.020	0.000	0.073	0.071	0.167				
			Sum⊃C ₆₀						
$Q_{\scriptscriptstyle Bowl}$	0.019	0.006	-0.061	-0.052	-0.141				
$\mathcal{Q}_{C_{60}}$	-0.019	-0.006	0.061	0.053	0.141				

Table S3. Parameters (electron density $[\rho(r)]$, its Laplacian $[\nabla^2 \rho(r)]$, potential energy density [V(r)], kinetic energy density [G(r)], and total electron energy density [H(r)] for selected bond critical points related to the non-covalent interactions between the fragments in Cor \supset C₆₀, *rim*-NCor \supset C₆₀, *hub*-NCor \supset C₆₀, PP-bowl \supset C₆₀, Hyd-bowl \supset C₆₀, Cyc-bowl \supset C₆₀, *rim*-3NSum \supset C₆₀, and Sum \supset C₆₀ complexes computed in the gas phase.

Bond critical points	Interaction	<i>ρ(r),</i> au	$ abla^2 ho(r)$, au	<i>V(r),</i> au	<i>G(r),</i> au	<i>H(r),</i> au
			•	Cor⊃C ₆₀	•	•
Cor C ₆₀		7.54E-03	2.31E-02	-3.76E-03	4.77E-03	1.01E-03
		7.59E-03	2.37E-02	-3.85E-03	4.89E-03	1.04E-03
		8.11E-03	2.43E-02	-4.07E-03	5.07E-03	9.99E-04
	ηη CC	7.70E-03	2.29E-02	-3.75E-03	4.74E-03	9.91E-04
	<u> </u>	8.11E-03	2.34E-02	-3.96E-03	4.90E-03	9.40E-04
		7.13E-03	2.08E-02	-3.35E-03	4.28E-03	9.25E-04
		7.84E-03	2.13E-02	-3.59E-03	4.46E-03	8.65E-04
				rim -NCor⊃C₀)	
rim-NCor ··· C ₆₀		9.35E-03	2.80E-02	-4.37E-03	5.68E-03	1.31E-03
		7.39E-03	2.12E-02	-3.74E-03	4.52E-03	7.85E-04
	π…π	9.40E-03	2.88E-02	-4.41E-03	5.80E-03	1.39E-03
	C…C	7.84E-03	2.25E-02	-3.52E-03	4.57E-03	1.05E-03
		9.34E-03	2.82E-02	-4.45E-03	5.75E-03	1.30E-03
		8.66E-03	2.62E-02	-4.08E-03	5.31E-03	1.23E-03

		7.07E-03	2.13E-02	-3.27E-03	4.29E-03	1.02E-03
			h	ub-NCor⊃C ₆₀		
hub-NCor ··· C ₆₀		5.90E-03	1.54E-02	-2.53E-03	3.18E-03	6.58E-04
		7.31E-03	2.09E-02	-3.35E-03	4.28E-03	9.37E-04
		8.22E-03	2.40E-02	-3.85E-03	4.93E-03	1.08E-03
		7.79E-03	2.30E-02	-3.61E-03	4.68E-03	1.06E-03
		7.24E-03	2.01E-02	-3.18E-03	4.10E-03	9.19E-04
	ηη ΓΩ	6.87E-03	1.98E-02	-3.46E-03	4.21E-03	7.47E-04
	<u> </u>	9.29E-03	2.83E-02	-4.41E-03	5.74E-03	1.33E-03
		7.71E-03	2.27E-02	-3.62E-03	4.65E-03	1.03E-03
		9.27E-03	2.81E-02	-4.31E-03	5.67E-03	1.36E-03
		6.59E-03	1.76E-02	-2.83E-03	3.61E-03	7.82E-04
		6.71E-03	1.83E-02	-2.93E-03	3.76E-03	8.26E-04
				PP-bowl⊃C ₆₀		
PP-bowl ··· C ₆₀		9.06E-03	2.73E-02	-4.31E-03	5.57E-03	1.26E-03
		1.12E-02	3.37E-02	-5.49E-03	6.96E-03	1.47E-03
		6.55E-03	1.85E-02	-2.92E-03	3.77E-03	8.56E-04
	π…π	8.46E-03	2.63E-02	-4.31E-03	5.44E-03	1.13E-03
	C…C	7.51E-03	2.16E-02	-3.38E-03	4.39E-03	1.01E-03
		8.72E-03	2.55E-02	-4.02E-03	5.20E-03	1.18E-03
		8.65E-03	2.65E-02	-4.24E-03	5.44E-03	1.19E-03
		4.77E-03	1.23E-02	-2.10E-03	2.59E-03	4.92E-04
			F	lyd-bowl⊃C ₆₀		
Hyd-bowl ··· C ₆₀		6.15E-03	1.57E-02	-2.60E-03	3.27E-03	6.66E-04
		8.10E-03	2.36E-02	-3.73E-03	4.81E-03	1.08E-03
		9.20E-03	2.71E-02	-4.30E-03	5.54E-03	1.24E-03
	π…π	7.58E-03	2.20E-02	-3.50E-03	4.50E-03	9.99E-04
	C…C	9.46E-03	2.80E-02	-4.39E-03	5.70E-03	1.31E-03
		8.52E-03	2.39E-02	-3.93E-03	4.96E-03	1.03E-03
		7.43E-03	2.06E-02	-3.22E-03	4.18E-03	9.68E-04
		6.18E-03	1.64E-02	-2.65E-03	3.38E-03	7.32E-04
			(Cyc-bowl⊃C ₆₀		
Cyc-bowl ··· C ₆₀		9.21E-03	2.61E-02	-4.06E-03	5.29E-03	1.23E-03
		7.50E-03	2.06E-02	-3.33E-03	4.24E-03	9.10E-04
	π…π	8.33E-03	2.31E-02	-3.55E-03	4.67E-03	1.12E-03
	C…C	6.59E-03	1.84E-02	-3.05E-03	3.82E-03	7.72E-04
		7.35E-03	2.10E-02	-3.22E-03	4.24E-03	1.01E-03
		7.86E-03	2.24E-02	-3.48E-03	4.54E-03	1.06E-03
			ri	<i>m</i> -3NSum⊃C ₆₀		
<i>rim</i> -3NSum ··· C ₆₀	π…π	5.32E-03	1.35E-02	-2.38E-03	2.88E-03	5.01E-04
	C···C	8.00E-03	2.39E-02	-3.49E-03	4.73E-03	1.24E-03
	ππ	7.66E-03	2.20E-02	-3.87E-03	4.69E-03	8.18E-04
	N····C	9.07E-03	2.65E-02	-4.62E-03	5.62E-03	9.98E-04
		7.73E-03	2.22E-02	-3.84E-03	4.69E-03	8.49E-04

		7.83E-03	2.45E-02	-3.84E-03	4.98E-03	1.14E-03
		7.99E-03	2.61E-02	-3.94E-03	5.23E-03	1.29E-03
	п…с	5.02E-03	1.84E-02	-2.40E-03	3.50E-03	1.10E-03
				Sum⊃C ₆₀		
Sum … C ₆₀		9.06E-03	2.56E-02	-4.51E-03	5.46E-03	9.46E-04
		5.48E-03	1.82E-02	-2.67E-03	3.61E-03	9.40E-04
	π…π	8.41E-03	2.40E-02	-4.16E-03	5.07E-03	9.18E-04
	<u> </u>	9.08E-03	2.53E-02	-4.48E-03	5.40E-03	9.16E-04
		8.61E-03	2.39E-02	-4.16E-03	5.07E-03	9.09E-04
	CH···π	7.30E-03	2.17E-02	-3.64E-03	4.54E-03	8.98E-04
	H…C	7.79E-03	2.32E-02	-3.90E-03	4.85E-03	9.45E-04

Table S4. Main contributions of the Kohn-Sham molecular orbitals to the corresponding occupied (Occ) and vacant (Vac) natural transition orbitals.

	Supramolecular host-guest systems Bowl⊃C ₆₀									
	Cor	<i>rim</i> -NCor	hub-NCor	PP-bowl	Hyd-bowl	Cyc-bowl	<i>rim</i> -NSum	Sum		
				LE ₁ (Fulle	erene C ₆₀)					
0.00	H(0.75)	H-1(0.54)	H-2(0.89)	H-3(0.76)	H-1(0.97)	H-1(0.65)	H(0.88)	H(0.49)		
	H-1(0.37)	H-2(0.62)	H-3(0.34)	H-4(0.58)	H-2(0.16)	H-2(0.51)	H-2(0.36)	H-4(0.64)		
Vac	L(0.58)	L(0.61)	L+1(0.58)	L(0.56)	L(0.66)	L(0.58)	L(0.95)	L+1(0.95)		
vac	L+1(0.81)	L+1(0.79)	L+2(0.71)	L+1(0.66)	L+1(0.55)	L+1(0.81)	L+2(0.29)	L+2(0.28)		
	LE ₂ (Bowl)									
0.00	H-6(0.85)	H-3(0.37)	H(0.98)	H (0.98)		H 0.89)	H-1(0.17)	H(0.94)		
0	H-7(0.38)	H-5(0.74)	H-1(0.14)	H-1(0.15)	П(0.997)	H-5(0.43)	H-5(0.95)	H-1(0.26)		
Vac	L+6(0.72)	L+3(0.86)	L+6(0.84)	L+6(0.29)	L+3(0.20)	L+5(0.19)	L+6(0.97)	L+6(0.70)		
vac	L+7(0.58)	L+6(0.49)	L+7(0.37)	L+7(0.92)	L+7(0.97)	L+6(0.95)	L+7(0.17)	L+16(0.34)		
				CT (Bowl \rightarrow	Fullerene C ₆₀					
0.00	H-5(0.25)	H-3(0.34)	H(0.96)			H (0.64)	H-5(0.57)	H(0.38)		
0	H-6(0.95)	H-5(0.86)	H-2(0.19)	П(0.999)	П(0.990)	H-5(0.74)	H-6(0.81)	H-1(0.85)		
	L(0.93)	L+2(0.97)	L(0.20)	L(0.53)	L+1(0.21)	L+1(0.95)	L+1(0.79)	L(0.95)		
vac	L+1(0.30)	L+5(0.22)	L+1(0.95)	L+1(0.80)	L+2(0.94)	L+4(0.19)	L+2(0.59)	L+2(0.31)		

Table S5. Excitation energies (E_x , eV), main singly excited configuration (HOMO(H)-LUMO(L)) and its weight (W), oscillator strength (f), extent of charge transfer (CT, e) or localization of exciton (X) computed for Cor \supset C₆₀, *rim*-NCor \supset C₆₀, *hub*-NCor \supset C₆₀, PP-bowl \supset C₆₀, Hyd-bowl \supset C₆₀, Cyc-bowl \supset C₆₀, *rim*-3NSum \supset C₆₀, and Sum \supset C₆₀ complexes in DCM.

		Supramolecular host-guest systems Bowl⊃C ₆₀										
	Cor	<i>rim</i> -NCor	hub-NCor	PP-bowl	Hyd-bowl	Cyc-bowl	<i>rim</i> -NSum	Sum				
	LE ₁ (Fullerene C ₆₀)											
Ex	2.555	2.567	2.563	2.565	2.553	2.550	2.568	2.556				
Trans.	H-L	H-L+2	H-2-L+2	H-3-L+2	H-1-L	H-2-L	H-L	H-1-L				
(W)	(0.26)	(0.25)	(0.41)	(0.19)	(0.28)	(0.29)	(0.42)	(0.18)				
f	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001				
Х	0.976	0.977	0.923	0.958	0.967	0.973	0.980	0.953				
	LE ₂ (Bowl)											
Ex	3.994	3.849	3.282	3.020	3.329	4.147 ^[a]	4.181	4.143				
Trans.	H-6-L+6	H-5-L+3	H-L+6	H-L+7	H-L+7	H-5-L+6	H-5-L+6	H-L+7				
(W)	(0.35)	(0.30)	(0.47)	(0.74)	(0.90)	(0.32)	(0.41)	(0.24)				
f	<0.001	0.029	0.187	0.003	0.001	0.030	0.025	0.038				
Х	0.799	0.796	0.924	0.920	0.955	0.508	0.831	0.633				
				Most absorp	tive transition							
Ex	4.390	4.381	4.392	4.410	4.409	4.370	4.396	4.394				
Trans.	H-L+5	H-1-L+5	H-1-L+6	H-1-L+4	H-1-L+5	H-4-L+3	H-2-L+3	H-2-L+3				
(W)	(0.24)	(0.18)	(0.23)	(0.18)	(0.17)	(0.18)	(0.23)	(0.20)				
f	0.806	0.489	0.671	0.688	0.823	0.863	0.847	0.748				
Localiz.	C ₆₀	C ₆₀	C ₆₀	C ₆₀	C ₆₀	C ₆₀	C ₆₀	C ₆₀				
Х	0.946	0.842	0.819	0.847	0.899	0.956	0.950	0.953				
				CT (Bowl \rightarrow	Fullerene C ₆₀)							
Ex	3.207	2.863	1.965	1.623	1.635	2.810	3.304	2.590				
Trans.	H-6-L	H-5-L+2	H-L+2	H-L+1	H-L+2	H-5-L+1	H-6-L+2	H-L				
(W)	(0.72)	(0.82)	(0.73)	(0.70)	(0.86)	(0.53)	(0.34)	(0.29)				
f	0.001	0.004	0.010	<0.001	0.023	<0.001	0.008	0.001				
СТ	0.889	0.962	0.831	0.965	0.908	0.801	0.823	0.896				

 $\ensuremath{^{[a]}}\xspace$ LE $_2$ state is partially delocalized over C $_{60}$ unit

Table S6. Excitation energies (E_x , eV) and dipole moments in ground state (μ_0 , D), change in dipole moments between ground state and state of interest ($\Delta\mu = \mu_i - \mu_0$, D), and DCM solvation energies (E_{solv} , eV) calculated for **Cor** \supset **C**₆₀, *rim*-**NCor** \supset **C**₆₀, *hub*-**NCor** \supset **C**₆₀, **PP-bowl** \supset **C**₆₀, **Hyd-bowl** \supset **C**₆₀, **Cyc-bowl** \supset **C**₆₀, *rim*-**3NSum** \supset **C**₆₀, and **Sum** \supset **C**₆₀ complexes.

	Supramolecular host-guest systems Bowl⊃C ₆₀									
	Cor	<i>rim-</i> NCor	hub-NCor	PP-bowl	Hyd-bowl	Cyc-bowl	<i>rim</i> -NSum	Sum		
	Ground state (GS)									
Ex	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
μ_0	0.40	1.86	1.16	0.23	0.21	0.89	0.74	0.99		
E _{solv}	-0.161	-0.225	-0.220	-0.276	-0.180	-0.156	-0.261	-0.155		

	LE ₁ (Fullerene C ₆₀)									
Ex	2.555	2.567	2.563	2.565	2.553	2.550	2.568	2.556		
Δμ	1.01	1.14	1.75	1.81	1.16	1.31	0.38	2.14		
E _{solv}	-0.167	-0.228	-0.220	-0.271	-0.184	-0.157	-0.259	-0.151		
				LE ₂ (E	Bowl)					
Ex	3.994	3.849	3.282	3.020	3.329	4.147	4.181	4.143		
Δμ	3.89	1.11	3.1	3.06	1.19	2.49	1.56	1.61		
E _{solv}	-0.143	-0.259	-0.183	-0.240	-0.135	-0.161	-0.251	-0.155		
				Most absorpt	ive transition					
Ex	4.390	4.381	4.392	4.410	4.409	4.370	4.396	4.394		
Δμ	0.36	1.11	2.82	4.30	1.04	3.06	1.19	6.48		
E _{solv}	-0.164	-0.235	-0.216	-0.265	-0.175	-0.155	-0.255	-0.150		
				CT (Bowl \rightarrow	Fullerene C ₆₀)					
Ex	3.207	2.863	1.965	1.623	1.635	2.810	3.304	2.590		
Δμ	24.81	23.26	21.36	26.36	25.05	21.35	25.1	24.93		
E _{solv}	-0.789	-0.775	-0.565	-0.731	-0.665	-0.560	-0.870	-0.702		

Table S7. Computed semi-classical rates (k_X in s⁻¹) and characteristic times (τ in ns/ps) for the charge separation processes in **Cor** \supset **C**₆₀, **Sum** \supset **C**₆₀ and *hub*-**NCor** \supset **C**₆₀, complexes in DCM solution using different effective Huang-Rhys (S_{eff}) factors.

$h\omega_{_{eff}}$	ΔG^{0} , eV	V , eV	λ_s	λ_i	$S_{e\!f\!f}$	$k_{\scriptscriptstyle X}$, s ⁻¹	τ			
C,0			Cor⊃	C ₆₀ (LE ₁ ^{Guest} —	→ CT)					
1200					1.143	5.67·10 ⁰				
1400					0.979	5.67·10 ⁰				
1600	0.652	9.35·10 ⁻³	0.413	0.170	0.857	5.67·10 ⁰	n/a			
1800					0.762	5.67·10 ⁰				
2000]				0.686	5.67·10 ⁰	1			
	$Sum \supset C_{60}$ (LE ₁ ^{Guest} \rightarrow CT)									
1200					1.116	9.46·10 ⁸	1.06 ns			
1400					0.956	9.41·10 ⁸	1.06 ns			
1600	0.034	1.96·10 ⁻³	0.410	0.166	0.837	9.39·10 ⁸	1.07 ns			
1800					0.744	9.38·10 ⁸	1.07 ns			
2000					0.669	9.37·10 ⁸	1.07 ns			
			hub-NCo	r⊃C ₆₀ (LE₁ ^{Gue}	st → CT)					
1200					1.109	4.31·10 ¹²	0.23 ps			
1400					0.951	4.16·10 ¹²	0.24 ps			
1600	-0.598	1.98·10 ⁻³	0.246	0.165	0.832	3.99·10 ¹²	0.25 ps			
1800					0.739	3.84·10 ¹²	0.26 ps			
2000]				0.665	3.80·10 ¹²	0.26 ps			

Figure S1. QTAIM molecular graph for $Cor \supset C_{60}$, *rim*-NCor $\supset C_{60}$, *hub*-NCor $\supset C_{60}$, PP-bowl $\supset C_{60}$, Hyd-bowl $\supset C_{60}$, Cyc-bowl $\supset C_{60}$, *rim*-3NSum $\supset C_{60}$, and Sum $\supset C_{60}$ complexes. Lines connecting the nuclei are the bond paths. Small green dots correspond to BCPs. BCPs of interest are marked by red and blue circles. Red circles correspond to C…C contacts, blue to H…C, and purple to N…C contacts.

2.00

0.020

0.020

2.00

Figure S2. Plot of RDG vs. sign($\lambda 2$)× ρ for Cor \supset C₆₀, rim-NCor \supset C₆₀, hub-NCor \supset C₆₀, PP-bowl \supset C₆₀, Hyd-bowl \supset C₆₀, cyc-bowl \supset C₆₀, rim-3NSum \supset C₆₀, and Sum \supset C₆₀ complexes.

Figure S3. NCI isosurfaces of van der Waals interactions ($-0.015 < \text{sign}(\lambda 2) \times \rho < 0.010 \text{ a.u.}$) for **Cor** \supset **C**₆₀, *rim*-**NCor** \supset **C**₆₀, *hub*-**NCor** \supset **C**₆₀, **PP-bowl** \supset **C**₆₀, **Hyd-bowl** \supset **C**₆₀, **Cyc-bowl** \supset **C**₆₀, *rim*-**3NSum** \supset **C**₆₀, and **Sum** \supset **C**₆₀ complexes. Isosurfaces were generated for RDG = 0.65 a.u.

Figure S4. Natural transition molecular orbitals representing the LE₁, LE₂ and CT states in **Cor** \supset **C**₆₀ complex.

Figure S5. Natural transition molecular orbitals representing the LE₁, LE₂ and CT states in *rim*-NCor \supset C₆₀ complex.

Figure S6. Natural transition molecular orbitals representing the LE₁, LE₂ and CT states in *hub***-NCor** \supset **C**₆₀, complex.

Figure S7. Natural transition molecular orbitals representing the LE₁, LE₂ and CT states in **PP-bowl** \supset **C**₆₀ complex.

Figure S8. Natural transition molecular orbitals representing the LE₁, LE₂ and CT states in **Hyd-bowl** \supset **C**₆₀ complex.

Figure S9. Natural transition molecular orbitals representing the LE₁, LE₂ and CT states in **Cyc-bowl** \supset **C**₆₀ complex.

Figure S10. Natural transition molecular orbitals representing the LE₁, LE₂ and CT states in *rim*-3NSum \supset C₆₀ complex.

Figure S11. Natural transition molecular orbitals representing the LE₁, LE₂ and CT states in $Sum \supset C_{60}$ complex.

Figure S12. Dependence of the charge separation rate for the $Cor \supset C_{60}$, $Sum \supset C_{60}$ and hub-NCor $\supset C_{60}$, complexes on the effective frequency computed using Marcus-Levich-Jortner approach.

Cor⊃C₆₀

Gas-phase. B3LYP-D3(BJ)/def2-SVP

А	tom X	Y	Z
6	0.934401000	1.329324000	-3.103006000
6	0.948428000	-0.100654000	-3.384666000
6	0.002510000	-0.938640000	-2.785815000
6	-0.994469000	-0.382560000	-1.882089000
6	-1.007847000	0.987465000	-1.613578000
6	-0.025122000	1.861821000	-2.236396000
6	2.315749000	1.786029000	-3.027079000
6	3.183784000	0.640053000	-3.262594000
6	2.338611000	-0.526260000	-3.482272000
6	2.725568000	-1.772919000	-2.980861000
6	0.404891000	-2.238642000	-2.264537000
6	-1.209130000	-1.335732000	-0.804526000
6	-1.426838000	-0.880884000	0.496033000
6	-1.443915000	0.545353000	0.775762000
6	-1.238931000	1.461488000	-0.256756000
6	-0.396341000	2.629651000	-0.037610000
6	0.354852000	2.876806000	-1.260903000
6	1.680625000	3.314691000	-1.189897000
6	2.681150000	2.758612000	-2.091245000
6	4.381106000	0.512011000	-2.551249000
6	4.761530000	1.525377000	-1.576014000
6	3.927650000	2.624355000	-1.350352000
6	3.697745000	3.098072000	0.007804000
6	2.308867000	3.524770000	0.107165000
6	1.586749000	3.288073000	1.281061000
6	0.204676000	2.834736000	1.208156000
6	-0.010666000	1.877386000	2.287174000
6	-0.815217000	0.756349000	2.072990000
6	-0.346419000	-2.484691000	-1.040041000
6	1.649114000	-1.818062000	3.0/413/000
6	1.283263000	-2.790160000	2.13/118000
6	2.283619000	-3.344609000	1.235129000
6	3.609041000	-2.905700000	1.305775000
0	3.989946000	-1.892812000	2.280802000
6	3.015296000	0.070019000	3.427963000
0	1.020252000	0.496109000	3.529879000
0	0.781791000	-0.671405000	3.310090000
6	-0.412979000	-0.542446000	2.590300000
6	-0.790657000	-1.554449000	1.019100000
6	1 654415000	-2.036223000	0.062010000
0 د	2 276172000	-3.333704000	-0.002013000
6	2.370173000	-3.313232000	-1.230131000
6	A 360447000	-2.002092000	0.082680000
6	5 207313000	-1 493994000	0 301375000
6	4 976302000	-1 019726000	1 659896000
0		1.010/20000	2.0000000

rim-NCor⊃C₆₀

Gas-	phase. B3LYP-	D3(BJ)/def2-SV	Р
Ator	n X	Y	Z
6	4.831420000	-0.703307000	-0.579113000
6	4.797642000	-1.150796000	0.781693000
6	4.751943000	-0.014352000	1.623871000
6	4.756665000	1.146320000	0.807435000
6	4.809359000	0.717376000	-0.562473000
6	4.318628000	-1.450752000	-1.626307000
6	4.209632000	-2.329151000	1.180738000
6	4.169179000	-0.065256000	2.883602000
6	4.169184000	2.327305000	1.217246000
6	4.297263000	1.469496000	-1.605016000
6	3.898746000	2.842772000	-1.254114000
6	3.827562000	3.262993000	0.134056000
6	3.757533000	2.354202000	2.604163000
6	3.754877000	1.215105000	3.403221000
6	3.804775000	-1.410765000	3.291946000
6	3.845972000	-3.255465000	0.101122000
6	3.912749000	-2.826761000	-1.283958000
6	3.992805000	-0.680691000	-2.797545000
6	3.986122000	0.713985000	-2.788674000
1	3.328925000	3.268062000	3.020249000
1	3.328031000	1.281914000	4.407333000
1	3.414749000	-1.577553000	4.304431000
1	3.622349000	-1.183293000	-3.693188000
1	3.613222000	1.224793000	-3.678673000
6	3.440351000	-3.715878000	-2.269046000
6	2.923413000	-4.962530000	-1.938942000
1	3.474373000	-3.410629000	-3.316512000
1	2.562277000	-5.625291000	-2.728603000
6	3.308001000	-4.519110000	0.404809000
6	2.854191000	-5.366486000	-0.596159000
1	3.240735000	-4.798753000	1.457535000
1	2.436874000	-6.342701000	-0.339410000
6	3.466340000	3.745353000	-2.245378000
6	2.983381000	5.007258000	-1.926790000
1	3.510454000	3.437359000	-3.291451000
1	2.655721000	5.681374000	-2.721229000
6	3.327019000	4.548687000	0.419048000
6	2.912317000	5.411892000	-0.585740000
1	3.263574000	4.869565000	1.460264000
1	2.528863000	6.402071000	-0.330344000
7	3.807390000	-2.462917000	2.490754000
6	-0.176054000	2.453791000	1.904714000
6	-0.419947000	1.424528000	2.908198000
6	0.241280000	0.195389000	2.825162000
6	1.170930000	-0.057210000	1.732959000
6	1.401976000	0.927745000	0.771788000

6	4.962599000	0.352073000	1.929379000	6	0.715024000	2.208516000	0.857721000
6	3.962059000	0.907828000	2.830695000	6	-1.438369000	3.130564000	1.637219000
6	1.238529000	1.742320000	3.026844000	6	-2.461349000	2.520485000	2.474938000
6	2.224925000	2.614515000	2.405046000	6	-1.832671000	1.466405000	3.259603000
6	3.558572000	2.205565000	2.308841000	6	-2.525327000	0.279471000	3.517041000
6	4.310232000	2.452655000	1.085696000	6	-0.480146000	-1.042068000	3.093914000
6	5.178799000	1.307396000	0.851332000	6	1.025253000	-1.447266000	1.329966000
6	5.400685000	0.852979000	-0.452456000	6	1.119960000	-1.796189000	-0.017508000
6	5.415183000	-0.576421000	-0.733069000	6	1.362487000	-0.768939000	-1.017399000
6	4.785468000	-0.786941000	-2.030589000	6	1.500537000	0.563961000	-0.631662000
6	3.972810000	-1.905375000	-2.239573000	6	0.876045000	1.618946000	-1.416660000
6	0.264331000	-3.132612000	0.037849000	6	0.390588000	2.636919000	-0.496019000
6	1.738704000	-2.646589000	-2.360331000	6	-0.817268000	3.289678000	-0.751724000
6	3.029535000	-1.359844000	3.146382000	6	-1.751856000	3.540739000	0.337587000
6	-4.779752000	-0.686940000	0.932634000	6	-3.756909000	2.345197000	1.979994000
6	-4.793919000	-1.109196000	-0.425527000	6	-4.083263000	2.771627000	0.626654000
6	-4.787502000	0.052702000	-1.245337000	6	-3.100945000	3.356126000	-0.177836000
6	-4.772540000	1.193060000	-0.395538000	6	-3.000214000	2.991535000	-1.584743000
6	-4.766525000	0.736513000	0.950729000	6	-1.588898000	2.951036000	-1.940157000
6	-4.238912000	-1.457206000	1.953414000	6	-1.119191000	1.974815000	-2.824794000
6	-4.272059000	-2.326605000	-0.842667000	6	0.142917000	1.297247000	-2.560706000
6	-4.267391000	0.065533000	-2.532059000	6	-0.000994000	-0.097075000	-2.963792000
6	-4.230936000	2.412010000	-0.781743000	6	0.599030000	-1.109205000	-2.209483000
6	-4.214674000	1.471801000	1.991873000	6	0.008328000	-2.058629000	2.171000000
6	-3.840064000	2.825507000	1.636918000	6	-2.439564000	-3.129547000	-1.596876000
6	-3.847409000	3.271738000	0.319058000	6	-2.126132000	-3.538413000	-0.297230000
6	-3.891463000	2.497716000	-2.188436000	6	-3.060639000	-3.285216000	0.790732000
6	-3.905749000	1.381743000	-3.017680000	6	-4.270950000	-2.634188000	0.535808000
6	-3.925710000	-2.379489000	-2.248714000	6	-4.597012000	-2.207837000	-0.817639000
6	-3.921368000	-1.242138000	-3.049769000	6	-3.455460000	-1.421985000	-2.864139000
6	-3.906247000	-3.222676000	0.234888000	6	-2.044002000	-1.465940000	-3.219300000
6	-3.889586000	-2.809070000	1.562933000	6	-1.416101000	-2.521716000	-2.436683000
6	-3.865990000	-0.706548000	3.135946000	6	-0.120640000	-2.347425000	-1.941801000
6	-3.856625000	0.684596000	3.154838000	6	0.204822000	-2.773754000	-0.586713000
1	-3.438596000	3.489103000	2.407656000	6	-0.775654000	-3.358804000	0.218475000
1	-3.448955000	4.267364000	0.104176000	6	-2.288308000	-2.947870000	1.978615000
1	-3.509646000	3.439608000	-2.592827000	6	-2.758013000	-1.973220000	2.864067000
1	-3.528780000	1.490140000	-4.038828000	6	-4.018199000	-1.294437000	2.597060000
1	-3.552981000	-3.315458000	-2.674687000	6	-4.759704000	-1.618520000	1.457679000
1	-3.541939000	-1.330430000	-4.071859000	6	-5.388110000	-0.564317000	0.673843000
1	-3.527908000	-4.220523000	-0.004923000	6	-5.287378000	-0.928543000	-0.732368000
1	-3.501044000	-3.499078000	2.316759000	6	-5.052991000	0.057555000	-1.694492000
1	-3.480691000	-1.240281000	4.009196000	6	-4.118335000	-0.194251000	-2.782357000
1	-3.463382000	1.189500000	4.041492000	6	-1.351498000	-0.278872000	-3.477485000
				6	-2.042075000	1.000833000	-3.391369000
				6	-3.397226000	1.041971000	-3.050960000
				6	-3.886220000	2.057823000	-2.129676000
				6	-4.909536000	1.449281000	-1.291032000
				6	-5.006257000	1.798962000	0.058647000
				6	-5.250543000	0.771486000	1.061223000
				6	-4.478199000	1.109080000	2.248759000
				-	•		0 0

6

6

-3.874670000

0.097479000

-0.876231000 -2.993551000 1.625682000

3.000791000

	hub-	NCo	r⊃C ₆₀
--	------	-----	-------------------

Gas-phase. B3LYP-D3(BJ)/def2-SVP

		- (- //	
Ato	m X	Y	Z
6	-3.480975000	-2.203411000	2.570163000
6	-3.823472000	-2.387025000	1.194720000
6	-3.345115000	-3.463980000	0.370759000
6	-2.819445000	-3.271208000	3.187093000
6	-2.698646000	-4.503788000	1.065874000
6	-3.632604000	-0.838840000	3.159333000
6	-3.159917000	-0.481248000	4.432948000
6	-3.353343000	1.897232000	3.920041000
6	-4.059748000	0.245303000	2.335625000
6	-3.836243000	1.623945000	2.628969000
6	-4.448622000	-1.325741000	0.534608000
7	-4.558847000	-0.064475000	1.090904000
6	-4.626933000	0.860028000	0.065998000
6	-4.476725000	-1.196068000	-0.847016000
6	-4.584979000	0.177064000	-1.140397000
6	-3.333114000	-3.313298000	-1.112408000
6	-3.826297000	-2.101898000	-1.699487000
6	-3.453864000	-1.617680000	-3.000684000
6	-2.771886000	-2.536651000	-3.809941000
6	-3.228976000	2.693832000	-3.458328000
6	-3.019658000	0.456979000	-4.450222000
6	-3.570379000	-0.151878000	-3.313230000
6	-3.789083000	2.160384000	-2.280437000
6	-4.051458000	0.751346000	-2.304961000
6	-3.485559000	4.231793000	-0.801146000
6	-3.898772000	2.900034000	-0.991751000
6	-4.212034000	2.185002000	0.215470000
6	-3.459884000	3.961016000	1.640960000
6	-3.897833000	2.636523000	1.533763000
6	-2.659207000	-4.182004000	-1.991569000
6	-2.428538000	-3.806797000	-3.318182000
6	-2.898220000	1.855036000	-4.526123000
6	-3.307014000	4.746856000	0.486805000
6	-3.057646000	0.861586000	4.810963000
6	-2.478942000	-4.414153000	2.444884000
1	-2.509682000	-3.210529000	4.232011000
1	-2.310470000	-5.369709000	0.526880000
1	-2.821904000	-1.255251000	5.123212000
1	-3.159512000	2.927632000	4.222108000
1	-2.447115000	-2.258341000	-4.814383000
1	-2.996732000	3.758183000	-3.533488000
1	-2.628951000	-0.148232000	-5.270058000
1	-3.244542000	4.863465000	-1.658093000
1	-3.184771000	4.385649000	2.607880000
1	-2.257138000	-5.131839000	-1.634471000
1	-1.892348000	-4.496143000	-3.974649000

6	-1.835477000	-1.000332000	3.432977000
6	-3.699705000	-2.449731000	-1.861521000

PP-bowl⊃C₆₀

Gas-	phase. B3LYP-	D3(BJ)/def2-SVP	
Ator	n X	Y	Z
6	1.826085000	0.071032000	6.615282000
6	0.964582000	-1.020354000	6.769160000
6	-0.292870000	-0.441069000	6.969354000
6	-0.176096000	0.945998000	6.892063000
6	-2.262400000	0.380906000	6.422556000
6	-1.408016000	1.478901000	6.499979000
7	-1.579275000	-0.801781000	6.668852000
7	1.134545000	1.285871000	6.681555000
6	3.124066000	-0.035588000	6.133957000
6	3.792552000	1.166001000	5.777294000
6	3.609267000	-1.353401000	5.871163000
6	5.108556000	1.021987000	5.323107000
6	4.938048000	-1.422995000	5.410436000
6	5.669259000	-0.257537000	5.179331000
1	5.708018000	1.886991000	5.038576000
1	5.405504000	-2.384663000	5.196758000
1	6.696304000	-0.342791000	4.816213000
6	1.305722000	-2.326495000	6.328545000
6	0.297550000	-3.340650000	6.126409000
6	2.680012000	-2.501686000	5.931396000
6	0.775318000	-4.540059000	5.579686000
6	3.071952000	-3.770351000	5.457847000
6	2.130514000	-4.768910000	5.294232000
1	0.083763000	-5.334622000	5.311670000
1	4.104459000	-3.955624000	5.160594000
1	2.429936000	-5.733927000	4.878638000
6	-3.548363000	0.424827000	5.904614000
6	-4.210118000	-0.815786000	5.693205000
6	-4.031279000	1.708544000	5.504868000
6	-5.485409000	-0.736822000	5.125122000
6	-5.326057000	1./11166000	4.950126000
6	-6.025514000	0.514685000	4.779528000
1	-6.062391000	-1.635995000	4.904528000
1	-5.785224000	2.639908000	4.608516000
I	-7.016683000	0.547371000	4.32069/000
6	-1.766109000	2.746738000	5.992901000
6	-0.780555000	3.783225000	5.842899000
6	-3.141269000	2.888847000	5.589447000
6	-1.324924000	5.045805000	5.563691000
6	-3.5/5993000	4.180508000	5.232837000
0	-2.688/34000	5.243260000	5.2842/9000
1	-0.696423000	5.932/16000	5.53/202000
1	-4.609824000	4.354563000	4.930775000
1	-3.0395//000	6.253558000	5.060849000
0	1.010413000	2.408/02000	0.104425000
0	5.005808000	2.42813/000	5.704522000
0	0./3/482000	3.00101/000	5.194332000
6	3.384330000	3.38023/000	5.195205000
0	1.44493/000	4.080030000	5.204209000

1	-2.454706000	2.297204000	-5.421741000	6	2.814202000	4.700520000	4.942380000
1	-2.963050000	5.777974000	0.598542000	1	4.637044000	3.576986000	4.913842000
1	-2.674821000	1.108949000	5.803753000	1	0.884693000	5.549967000	4.876453000
1	-1.959490000	-5.231646000	2.950494000	1	3.261917000	5.585043000	4.484388000
6	5.237993000	-0.821382000	-1.517860000	6	-2.068889000	-2.050665000	6.318197000
6	5.636483000	-0.689556000	-0.123068000	6	-3.462198000	-2.072917000	5.970032000
6	5 168608000	-1 603373000	0.826711000	6	-1.232664000	-3.223857000	6.286255000
6	4 283305000	-2 687128000	0.421421000	6	-4.075988000	-3.326515000	5.829325000
6	2 000550000	-2 81289/000	-0.917759000	6	-1.963357000	-4.427490000	6.227812000
6	1 287228000	-2.812854000	-0.517755000	6	-3.344097000	-4.488776000	6.024933000
6	4.387338000 E 046337000	0 517215000	2 05 99 5000	1	-5.136499000	-3.385579000	5.581821000
6	5.040257000	0.517515000	-2.056609000	1	-1.435915000	-5.372862000	6.330175000
0	5.327849000	1.477126000	-1.000143000	1	-3.836963000	-5.462227000	5.982607000
6	5.691917000	0./30//0000	0.196966000	6	1.851445000	-3.065219000	0.282049000
6	5.274789000	1.180555000	1.453013000	6	0.525595000	-3.600078000	0.562730000
6	4.734791000	-1.134060000	2.135311000	6	2.507793000	-2.284700000	1.239242000
6	3.303481000	-2.889426000	1.481113000	6	-0.091079000	-3.337079000	1.790076000
6	1.981026000	-3.210704000	1.158811000	6	-1.512362000	-3.009649000	1.837669000
6	1.582982000	-3.341127000	-0.237893000	6	-0.251781000	-3.547210000	-0.667991000
6	2.523493000	-3.147728000	-1.255041000	6	-1.613636000	-3.232845000	-0.622536000
6	2.159368000	-2.399821000	-2.451957000	6	-2.257953000	-2.959127000	0.655324000
6	3.312004000	-1.605927000	-2.855568000	6	3.273688000	-0.720199000	-0.518207000
6	3.127641000	-0.320099000	-3.373902000	6	2.588268000	-1.533203000	-1.514542000
6	4.012960000	0.762691000	-2.967942000	6	3.232817000	-1.087415000	0.830633000
6	4.562929000	2.643108000	-0.892211000	6	1.892513000	-2.680870000	-1.122985000
6	3.487036000	2.900212000	-1.840337000	6	0.592937000	-2.979602000	-1.709622000
6	3.216804000	1.977659000	-2.855923000	6	2.015418000	-0.637837000	-2.510636000
6	1 839434000	1 645982000	-3 194374000	6	0.768278000	-0.925648000	-3.074502000
6	1 784019000	0 225255000	-3 515415000	6	0.043017000	-2.121182000	-2.666192000
6	0.677154000	-0 536003000	-3 12759/000	6	2.896607000	1.271908000	1.493906000
6	0.077134000	-0.530003000	-3.127394000	6	2.936439000	1.653397000	0.087/42000
6	0.809489000	2.07/02/000	1 53263000	6	3.042194000	-0.0/1881000	1.85/951000
0	-0.107208000	-2.074982000	-1.525655000	6	3.121650000	0.6/8095000	-0.89/254000
6	0.240272000	-2.792428000	-0.375887000	6	2.345122000	0.729319000	-2.129446000
6	3.582812000	-1.928393000	2.540157000	6	1.9649/3000	2.720553000	-0.118069000
6	-0.669106000	-0.196989000	2.098468000	6	1.219399000	2.770095000	-1.300496000
6	0.355844000	-0.443939000	3.013958000	6	1.412800000	1./53009000	-2.32613/000
6	1.240518000	0.640382000	3.417923000	0	1.230180000	0.130130000	3.323140000
6	1.056354000	1.927098000	2.898821000	0	1.085217000	1.334038000	3.14030/000
6	-0.019689000	2.184518000	1.951486000	6	2.193193000	-0.0413/9000	2.890979000
6	-1.260438000	1.009479000	0.163892000	6	1.901454000	2.103343000	2.133907000
6	-1.315430000	-0.409585000	-0.156482000	6	0.222754000	2.999307000	2 1000247000
6	-0.948901000	-1.156198000	1.039625000	6	-0.333734000	2 747762000	2 246060000
6	-0.190434000	-2.323688000	0.933286000	6	-0.883/11000	2.747702000	1 204834000
6	0.883151000	-2.581212000	1.882562000	6	-0.038433000	2 522056000	2 783007000
6	1.151926000	-1.660111000	2.900764000	6	-0.403801000	-2.522050000	2.783997000
6	2.584198000	0.095135000	3.554594000	6	1 867064000	-1.089893000	2 518500000
6	3.690594000	0.856365000	3.166122000	6	-0.088554000	-0.3708/6000	3 800346000
6	3,499629000	2,195114000	2.624683000	6	-1.058105000	0.686542000	3 595509000
6	2.209794000	2.718407000	2.492459000	6	-1 706243000	_1 991778000	2 861277000
6	1 846146000	3 466780000	1 295558000	6	-2 638214000	-0.966887000	2.664488000
6	0.467816000	3.400700000	0.960273000	6	-2 306937000	0 400786000	3 040903000
6	0.407010000	3 000345000	-0 270/01000	6	-2 142236000	2 827914000	0 255181000
6	0.000170000	1 077007000	0.373401000	6	-2 187155000	2.448570000	1 660922000
0 C	0.000220000	1.922002000		6	-2.882160000	1.298450000	2.050265000
σ	-0.900320000	-0.022022000	-1.4111/1000	0	2.002100000	1.2/0120000	2.0202020000

6	-0.418690000	0.092330000	-2.401878000
6	-0.365492000	1.454886000	-2.093628000
6	0.786441000	2.248521000	-2.499166000
6	1.066858000	3.210841000	-1.439110000
6	2.389696000	3.530722000	-1.116882000
6	2.787453000	3.660943000	0.278833000
6	4.130375000	3.112637000	0.416957000
6	4.478887000	2.395744000	1.565688000
6	2.529170000	-1.325902000	3.234695000
6	4.787761000	0.228983000	2.442394000
6	-0.862057000	1.141138000	1.559001000

Hyd-bowl⊃C₆₀

Gas-phase. B3LYP-	D3(BJ)/def2-SVI	Р	Ga
Atom X	Y	Z	At
-3.739281000	-3.028091000	2.907804000	6
-3.846426000	-3.498931000	1.593734000	6
-3.580146000	-4.531151000	1.356294000	6
-4.232939000	-2.597297000	0.584716000	6
-4.568794000	-1.291479000	1.024094000	6
-4.347387000	-0.735036000	2.299103000	6
-3.939304000	-1.671395000	3.257301000	6
-3.712244000	-1.347591000	4.275239000	6
-4.893496000	-0.548474000	-0.080946000	6
-4.205335000	-2.536220000	-0.889061000	6
-3.763706000	-3.346006000	-1.950932000	6
-4.536688000	-1.199914000	-1.232526000	6
-3.611709000	-2.767120000	-3.216688000	1
-3.482457000	-4.388620000	-1.786863000	1
-4.288021000	-0.540531000	-2.453092000	1
-3.831885000	-1.391147000	-3.467169000	1
-3.577449000	-0.985147000	-4.448481000	1
-4.273597000	0.760543000	2.356617000	1
-4.454289000	1.437616000	1.133323000	6
-3.765231000	1.571077000	3.379432000	6
-4.010855000	2.742008000	0.796422000	6
-4.847187000	0.817142000	-0.024527000	6
-3.438460000	2.925227000	3.135469000	6
-3.551523000	1.143948000	4.361622000	6
-3.523558000	3.513631000	1.866791000	6
-4.449027000	1.532336000	-1.124916000	1
-3.159172000	4.531109000	1.708987000	1
-4.008380000	2.804126000	-0.677987000	1
-4.249799000	0.957497000	-2.396248000	7
-3.521809000	3.666858000	-1.678069000	1
-3.745950000	1.854325000	-3.345688000	1
-3.431650000	3.187898000	-2.990469000	6
-3.161476000	4.668457000	-1.433387000	6
-3.524708000	1.511118000	-4.358553000	6
	Gas-phase. B3LYP- Atom X 5 -3.739281000 5 -3.846426000 5 -3.846426000 5 -3.880146000 5 -4.232939000 5 -4.568794000 5 -4.568794000 5 -4.568794000 5 -4.347387000 5 -3.939304000 -3.712244000 -3.712244000 6 -4.205335000 5 -4.205335000 5 -3.611709000 5 -4.288021000 5 -3.611709000 -3.482457000 -3.482457000 5 -3.611709000 -3.765231000 -3.577449000 5 -4.454289000 5 -3.765231000 5 -3.51523000 5 -3.51523000 5 -3.523558000 -3.521809000 -3.521809000 5 -3.61476000 -3.521809000 -3.61476000 -3.524708000 -3.524708000	Gas-phase. B3LYP-D3(BJ)/def2-SVI Atom X Y 5 -3.739281000 -3.028091000 5 -3.846426000 -3.498931000 6 -3.880146000 -4.531151000 6 -4.232939000 -2.597297000 6 -4.68794000 -1.291479000 6 -4.347387000 -0.735036000 6 -3.939304000 -1.671395000 7 -4.893496000 -0.548474000 6 -4.205335000 -2.536220000 6 -4.36688000 -1.199914000 6 -4.205335000 -2.767120000 7 -4.88021000 -0.540531000 6 -3.611709000 -2.767120000 7 -3.831885000 -1.391147000 6 -3.2577449000 -0.985147000 6 -3.765231000 1.571077000 7 -4.847187000 0.817142000 6 -3.51523000 1.143948000 7 -3.523558000 3.513631000 6 -3.52358000 3.513631	Gas-phase. B3LYP-D3(BJ)/def2-SVPAtomXYZ5 -3.739281000 -3.028091000 2.907804000 5 -3.846426000 -3.498931000 1.593734000 -3.580146000 -4.531151000 1.356294000 5 -4.232939000 -2.597297000 0.584716000 5 -4.568794000 -1.291479000 1.024094000 5 -4.347387000 -0.735036000 2.299103000 5 -3.939304000 -1.671395000 3.257301000 -3.712244000 -1.347591000 4.275239000 -4.893496000 -0.548474000 -0.080946000 -4.893496000 -2.536220000 -0.889061000 -3.763706000 -3.346006000 -1.950932000 -4.536688000 -1.199914000 -1.232526000 -3.611709000 -2.767120000 -3.216688000 -3.482457000 -4.388620000 -1.786863000 -3.831885000 -1.391147000 -3.467169000 -3.577449000 -0.985147000 -4.448481000 -4.273597000 0.760543000 2.356617000 -3.765231000 1.571077000 3.379432000 -4.454289000 1.437616000 1.133323000 -4.487187000 0.817142000 -0.024527000 -3.52358000 3.513631000 1.866791000 -3.52358000 3.513631000 1.866791000 -3.52358000 3.513631000 1.78987000 -4.449027000 1.532336000 -1.124916000 -3.521809000 <t< td=""></t<>

6	-2.798184000	2.046759000	-0.701668000
6	-0.882491000	2.282885000	-2.249202000
6	-0.199042000	3.097451000	-1.253417000
6	-0.815107000	3.362216000	-0.026189000
6	-2.154222000	1.768740000	-1.978979000
6	-1.527097000	-0.395083000	-2.997444000
6	-0.202263000	0.140919000	-3.278903000
6	0.113304000	1.452646000	-2.912592000
6	-2.482546000	0.402006000	-2.360340000
6	-3.182933000	-1.507150000	-0.955123000
6	-2.186464000	-2.337217000	-1.617724000
6	-1.375543000	-1.792909000	-2.618298000
6	-3.328370000	-0.165034000	-1.319210000
6	-3.567480000	0.484610000	1.054632000
6	-3.415887000	-0.915707000	1.433952000
6	-3.228560000	-1.891602000	0.449819000
6	-3.523557000	0.851401000	-0.294001000

Cyc-bowl⊃C₆₀

Gas-phase. B3LYP-D3(BJ)/def2-SVP

Ator	n X	Y	Z
6	-4.303945000	2.976575000	0.874091000
6	-4.819872000	1.673273000	0.823066000
6	-5.062301000	1.178260000	-0.488592000
6	-4.645753000	1.710873000	-1.704140000
6	-4.104417000	2.998376000	-1.599898000
6	-3.983692000	3.618205000	-0.336103000
6	-4.535450000	-0.713793000	-2.549088000
6	-4.957149000	-1.086759000	-1.278678000
6	-4.633131000	-2.265353000	-0.552910000
6	-4.014973000	-3.273881000	-1.308616000
6	-3.686082000	-3.000142000	-2.647902000
6	-3.887396000	-1.738736000	-3.251682000
1	-4.079181000	3.467799000	1.823221000
1	-3.721381000	3.514605000	-2.484162000
1	-3.547389000	4.619067000	-0.292617000
1	-3.720904000	-4.226099000	-0.861809000
1	-3.177433000	-3.774263000	-3.226986000
1	-3.485860000	-1.557352000	-4.252371000
6	-4.710378000	0.772889000	-2.929908000
6	-5.256912000	-0.575829000	0.867804000
6	-4.930382000	0.485699000	1.730905000
6	-4.804027000	-1.908159000	0.891932000
6	-4.442668000	0.052790000	2.977001000
6	-4.304635000	-2.300568000	2.147135000
6	-4.204965000	-1.328684000	3.169249000
1	-4.145120000	0.755155000	3.758398000
1	-3.901660000	-3.300272000	2.325764000
1	-3.798448000	-1.647545000	4.132396000
7	-5.454109000	-0.138994000	-0.411478000
1	-5.687599000	0.904469000	-3.431808000
1	-3.944679000	1.061685000	-3.665098000
6	-0.287629000	-2.260753000	2.044545000
6	1.059732000	-2.789436000	2.209825000
6	1.998592000	-2.086398000	2.971444000

1	-3.246865000	-3.388680000	-4.037332000	6	1.630741000	-0.823774000	3.596713000
1	-3.420395000	-3.721014000	3.689360000	6	0.338108000	-0.314665000	3.437617000
1	-3.037645000	3.516590000	3.961442000	6	-0.639534000	-1.046586000	2.643818000
1	-3.034059000	3.848337000	-3.764054000	6	-0.720175000	-2.552652000	0.683875000
6	-1.421987000	-1.118862000	-0.597356000	6	0.358942000	-3.262860000	0.009769000
6	-1.590203000	0.311454000	-0.394271000	6	1.458903000	-3.409577000	0.953107000
6	-1 111092000	1 214863000	-1 342303000	6	2 780912000	-3 302767000	0 508666000
6	-0.438607000	0.727065000	-2 535690000	6	3 375022000	-1 974405000	2 507818000
6	-0 272318000	-0.648737000	-2 729753000	6	2 780024000	0.068207000	3 520034000
6	-0 778742000	-1 592238000	-1 742484000	6	2.70002.1000	1 433229000	3 286854000
6	-1 158060000	-1 725770000	0.699221000	6	1 244403000	1.964470000	3 121710000
6	-1.168235000	-0.670499000	1 702322000	6	0 140129000	1.109146000	3 195548000
6	-1.106255000	0.5900/15000	1.026048000	6	-0.960292000	1.109140000	2 252204000
6	-1.430742000	1 761514000	1.020048000	6	1 44052000	0.076782000	1 010505000
6	-0.803/14000	2 / 3810/000	0.010425000	6	-1.440529000	-0.070782000	0.606301000
6	-0.432472000	2.438104000	2 820016000	6	-1.831088000	-0.333301000	0.000391000
6	1 864424000	1.040030000	-2.839910000	6	-1.481004000	-1.013//2000	-0.019775000
6	2 0204224000	0.282265000	-3.525814000	6	0.020497000	-3.012080000	-1.339631000
6	2.039439000	-0.282303000	-3.324098000	6	-0.1/3124000	-2.040496000	-2.072279000
0	1.267285000	-1.104304000	-3.234097000	0	-1.200/33000	-1.554607000	-1.422321000
6	1.20/383000	-2.42/055000	-2.33/488000	0	-1.40443/000	0.004///000	-1.008555000
0	0.1/145/000	-2.090301000	-1.034280000	0	-1.803728000 1.242517000	0.084308000	-0.412302000
0	0.428/99000	-5.2/5/02000	-0.388434000	0	-1.342317000	1.900303000	-0.08/033000
6	-0.233449000	-2.785508000	0.803449000	0	-0.91001/000	2.232734000	1.2/2303000
0	-0.2/21/9000	-0./105/9000	2.772330000	0	0.238170000	2 002248000	1.190930000
6	0.0/88/0000	-1.808894000	2.8/8/04000	0	2 858066000	5.005548000	2.102/08000
0	1.052205000	-2.823939000	1.914/0/000	0	5.858000000	-0.042021000	2.84/390000
0	1.955295000	-3.338904000	1.409004000	0	4.014184000	2.0528/9000	-0.383429000
0	1./93323000	-3.010303000	-0.012834000	0	4./83033000	1.722341000	0.320223000
0	2.845//0000	-3.303337000	-0.898803000	0	3.132009000	0.459921000	-0.306333000
0	2.377800000	-2./30081000	-2.190311000	0	4./304/8000	0.1/9909000	-1.011520000
6	2 402678000	-1.830430000	-2.490/48000	0	3.933740000	1.149841000	-2.344382000
6	5.405078000	-0.020012000	-3.143644000	6	2.234/8/000	2.893/41000	-1.910342000
0	0.040022000	2.703413000	-1.853540000	0	1.830303000	3.313070000	-0.034430000
0	4.904032000	1.010//0000	-0.043002000	0	2.9303/4000	3.304084000	0.289090000
0	4.052148000	2.004009000	-0./40384000	0	2.0/0319000	3.114190000	1.038/10000
6	3.3/0641000	3.155568000	0.443369000	6	3.4/2369000	2.145052000	2.3/1993000
6	3.628327000	2.5/2865000	1.68844/000	6	4.50/430000	1.462393000	1./25856000
6	4.5/8223000	1.4/4194000	1./94640000	6	5.103/54000	-0.5/9831000	0.713082000
6	5.405643000	-0.42/938000	0.451046000	6	4.639688000	-1.85/644000	0.386630000
6	5.245/48000	-0./05440000	-0.969095000	6	4.20/242000	-2.14988/000	-0.9/3180000
6	4.9/3235000	0.554637000	-1.645/03000	6	4.254238000	-1.151840000	-1.951623000
6	4.0/0628000	0.594026000	-2./11/40000	6	3.155151000	-1.0044 / /000	-2.896444000
6	3.119/16000	1.692018000	-2.819940000	6	2.956/62000	0.418086000	-3.138/64000
6	3.111308000	2.706855000	-1.85/523000	6	1.663926000	0.92/631000	-3.29/98/000
6	2.006658000	3.502759000	0.068144000	6	1.295646000	2.191100000	-2.6/254/000
6	0.955121000	3.248768000	0.954507000	6	0.514904000	3.406011000	-0.209991000
6	1.223393000	2.641245000	2.253460000	6	-0.462547000	2.6/324/000	-1.003184000
6	2.533544000	2.3104/4000	2.613367000	6	-0.081/08000	2.081180000	-2.211592000
6	2.807154000	1.048485000	3.289742000	6	-0.565121000	0.748125000	-2.552447000
6	4.071211000	0.531729000	2.783308000	6	0.514577000	0.036360000	-3.223719000
6	4.239096000	-0.842927000	2.589639000	6	0.705881000	-1.329288000	-2.988926000
6	4.920548000	-1.332661000	1.399330000	6	2.051675000	-1.859734000	-2.822182000
6	4.606674000	-1.876051000	-1.385343000	6	2.002664000	-2.899937000	-1.802671000
6	4.100137000	-2.819180000	-0.397440000	6	3.058128000	-3.042215000	-0.897218000
6	4.254009000	-2.553076000	0.966412000	6	4.705222000	0.040274000	1.969331000
6	3.159259000	-2.818/28000	1.890283000	6	3.757914000	-2.569813000	1.302137000

6	3.150130000	-1.761544000	2.893570000
6	1.935184000	-1.266166000	3.378188000
6	1.760206000	0.167067000	3.579613000
6	0.394967000	0.511240000	3.205785000
6	0.133380000	1.722283000	2.554976000
6	1.846345000	3.225385000	-1.353984000
6	-0.299783000	2.704820000	0.453918000
6	5.231610000	1.003258000	0.652701000

rim-3NSum⊃C₆₀

Gas-phase. B3LYP-D3(BJ)/def2-SVP

Ato	m X	Y	Z
6	-0.589393000	-1.492355000	-1.478279000
6	0.831552000	-1.282973000	-1.531711000
6	1.337358000	0.010463000	-1.571647000
6	0.443075000	1.134789000	-1.632509000
6	-0.930777000	0.929402000	-1.577158000
6	-1.456554000	-0.407101000	-1.531776000
6	0.999447000	2.217406000	-0.928846000
7	0.230229000	3.139972000	-0.364232000
6	-1.124235000	2.958107000	-0.355414000
6	-1.762936000	1.819381000	-0.872836000
6	-2.624137000	-0.430729000	-0.750643000
7	-3.002700000	-1.532246000	-0.115083000
6	-2.173937000	-2.617791000	-0.113074000
6	-0.900770000	-2.627397000	-0.707044000
6	1.480123000	-2.247972000	-0.741100000
7	2.650960000	-1.994879000	-0.168445000
6	3.166329000	-0.731469000	-0.247243000
6	2.512643000	0.342964000	-0.872209000
6	-3.047170000	1.041747000	-0.492232000
6	2.485581000	1.873582000	-0.638251000
6	0.436256000	-3.345616000	-0.395160000
1	-3.914610000	1.329717000	-1.111558000
1	-3.336914000	1.192630000	0.558051000
1	2.768368000	2.154354000	0.385148000
1	3.163318000	2.413040000	-1.322770000
1	0.582511000	-4.245646000	-1.018074000
1	0.516260000	-3.662278000	0.654027000
1	4.075366000	-0.568133000	0.342594000
1	-1.685160000	3.701348000	0.221492000
1	-2.510791000	-3.451091000	0.513035000
6	-1.025734000	1.570487000	2.469740000
6	-0.940618000	0.166510000	2.093708000
6	-1.857397000	-0.748952000	2.614698000
6	-2.903490000	-0.302654000	3.522912000
6	-2.986323000	1.046536000	3.881032000
6	-2.029385000	2.003765000	3.340668000
6	0.329969000	2.083726000	2.603397000
6	1.253307000	0.997692000	2.311753000
6	0.469202000	-0.188019000	1.991991000
6	0.904471000	-1.442200000	2.425421000
6	-1.405066000	-2.059056000	3.056740000
6	-3.095949000	-1.336656000	4.531700000
6	-3.363470000	-0.980554000	5.856970000

Sum⊃C₆₀

Gas-	phase. B3LYP-	D3(BJ)/def2-SVF	þ
Ator	n X	Y	Z
6	5.739719000	-2.805671000	1.762324000
6	5.779913000	-1.784644000	2.800652000
6	4.837267000	-0.752416000	2.800862000
6	3.818651000	-0.699537000	1.763664000
6	3.777473000	-1.678991000	0.770269000
6	4.757106000	-2.755004000	0.768824000
6	7.112020000	-3.145797000	1.411395000
6	7.999799000	-2.332572000	2.232255000
6	7.176382000	-1.491376000	3.091089000
6	7.571659000	-0.179978000	3.373660000
6	5.246537000	0.614413000	3.097671000
6	3.595519000	0.694541000	1.419380000
6	3.338244000	1.055003000	0.096634000
6	3.301976000	0.033756000	-0.939812000
6	3.515998000	-1.303618000	-0.610259000
6	4.334510000	-2.148265000	-1.469483000
6	5.103347000	-3.045188000	-0.616766000
6	6.420588000	-3.371908000	-0.953595000
6	7.445404000	-3.422520000	0.081837000
6	9.184222000	-1.826465000	1.688609000
6	9.531600000	-2.114084000	0.304245000
6	8.680157000	-2.895424000	-0.483027000
6	8.418936000	-2.519602000	-1.865874000
6	7.022862000	-2.813684000	-2.156962000
6	6.283781000	-1.953420000	-2.976383000
6	4.911905000	-1.614607000	-2.625714000
6	4.690475000	-0.215358000	-2.970966000
6	3.906517000	0.589775000	-2.141796000
6	4.476577000	1.509278000	2.243509000
6	6.384763000	3.277220000	-1.573504000
6	6.050726000	3.553377000	-0.243675000
6	7.075684000	3.500887000	0.791097000
6	8.392373000	3.173408000	0.454081000
6	8.739409000	2.885051000	-0.930402000
6	7.716727000	1.913377000	-2.960457000
6	6.321184000	1.622298000	-3.254423000
6	5.497686000	2.463347000	-2.394670000
6	4.314963000	1.956195000	-1.849965000
6	3.967694000	2.242535000	-0.465091000
6	4.814897000	3.028585000	0.321950000
6	6.473405000	2.943565000	1.995213000
6	7.213204000	2.083524000	2.814110000
6	8.584507000	1.743392000	2.461845000

S32

~	-3.448707000	0.425621000	6.229896000	6	9.163170000	2.278636000	1.307032000
6	-3.264499000	1.418745000	5.261933000	6	9.986284000	1.437157000	0.448611000
6	-2.476345000	2.603990000	5.574320000	6	9.722572000	1.811652000	-0.933551000
6	-1.715121000	2.967398000	4.387179000	6	9.684141000	0.831475000	-1.928794000
6	-0.412063000	3.458348000	4.516177000	6	8.661241000	0.882757000	-2.962716000
6	0.631430000	3.009724000	3.603637000	6	5.925922000	0.310460000	-3.535675000
6	2.444760000	0.878094000	3.033593000	6	6.910468000	-0.763885000	-3.538563000
6	2.759905000	1.842168000	4.080141000	6	8.250682000	-0.482721000	-3.257862000
6	1.869550000	2.884215000	4.359900000	6	9.020914000	-1.378758000	-2.405842000
6	1.591619000	3.255767000	5.740142000	6	9.907173000	-0.565548000	-1.584436000
6	0.181631000	3.610439000	5.836931000	6	10.159250000	-0.926058000	-0.257931000
6	-0.549822000	3.263349000	6.976496000	6	10.199486000	0.096031000	0.779804000
6	-1.906121000	2.750096000	6.842614000	6	9.596592000	-0.461068000	1.982870000
6	-2.096858000	1.715624000	7.849369000	6	8.805873000	0.345593000	2.807088000
6	-2.852451000	0.577759000	7.550719000	6	5.076269000	2.652118000	1.705704000
6	-2.168742000	-2.423404000	4.242314000	6	6.586921000	0.894803000	3.377429000
6	-0.283320000	-1.939683000	8.430176000	6	7.756361000	2.935025000	-1.922980000
6	-0.585180000	-2.863779000	7.425790000	6	-0.093294000	1.225158000	-0.731002000
6	0.457832000	-3.311688000	6.512650000	6	-0.073239000	0.030514000	-1.442099000
6	1.760127000	-2.819468000	6.640812000	6	0.559950000	-0.089045000	-2.687236000
6	2.073989000	-1.856446000	7.686886000	6	1.049274000	1.101223000	-3.245296000
6	0.986766000	-0.021223000	8.937142000	6	1.025467000	2.333698000	-2.513442000
6	-0.423163000	0.333038000	9.033916000	6	0.513386000	2.396117000	-1.208706000
6	-1.209009000	-0.853261000	8.721598000	6	0.736197000	3.320282000	0.021734000
6	-2.397941000	-0.733137000	7.994697000	1	1.590611000	1.089306000	-4.195161000
6	-2.712873000	-1.696306000	6.947781000	1	1.544718000	3.189831000	-2.953503000
6	-1.823570000	-2.738605000	6.668945000	1	1.750498000	3.746136000	0.036189000
6	-0.135935000	-3.464718000	5.191791000	1	0.032849000	4.172258000	0.025879000
6	0.596158000	-3.117012000	4.053045000	6	-0.060068000	-1.222140000	-0.741162000
6	1.953531000	-2.604010000	4.185040000	6	-0.067885000	-1.239502000	0.648032000
6	2.522739000	-2.457785000	5.453348000	6	0.558548000	-2.250564000	1.389998000
6	3.310374000	-1.272626000	5.766008000	6	1.080689000	-3.325029000	0.652800000
6	3.030660000	-0.900243000	7.146346000	6	1.093767000	-3.305557000	-0.779986000
6	2.947800000	0.448698000	7.504514000	6	0.584325000	-2.211641000	-1.496818000
6	1.904782000	0.896892000	8.417941000	6	0.856995000	-1.599868000	-2.898238000
6	-0.858288000	1.590457000	8.606051000	1	1.617120000	-4.135641000	1.153860000
6	0.098178000	2.546831000	8.066499000	1	1.643995000	-4.099559000	-1.292896000
6	1.450910000	2.206766000	7.973437000	1	1.899057000	-1.766909000	-3.213902000
6	2.213472000	2.568444000	6.786095000	1	0.215596000	-2.046309000	-3.678500000
6	3.140014000	1.482154000	6.496138000	6	-0.089811000	-0.006100000	1.381716000
6	3.409087000	1.125873000	5.170680000	6	-0.103420000	1.206584000	0.704017000
6	3.495631000	-0.280427000	4.797333000	6	0.492962000	2.364718000	1.223611000
6	2.901038000	-0.433562000	3.475220000	6	0.986635000	2.267029000	2.532992000
6	2.143961000	-1.570335000	3.177180000	6	1.005787000	1.014273000	3.229539000
6	-1.545823000	-3.110035000	5.288370000	6	0.523367000	-0.160430000	2.633132000
6	-0.052222000	-2.398176000	2.964760000	6	0.792382000	-1.680604000	2.815541000
6	1.073301000	-1.426311000	8.563953000	1	1.501609000	3.110827000	3.001214000
				1	1.537433000	0.975812000	4.184836000
				1	1.816317000	-1.875235000	3.168675000
				1	0.109318000	-2.132733000	3.556404000

References:

- 1 A. D. Becke, Phys. Rev. A 1988, **38**, 3098-3100.
- 2 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 1988, **37**, 785-789.
- 3 S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200-1211.
- 4 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- 5 F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
- 6 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 7 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem. 2011, **32**, 1456-1465.
- 8 S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 1999, **314**, 291-299.
- 9 T. Yanai, D. P. Tew and N. C. Handy, Chem. Phys. Lett. 2004, 393, 51-57.
- 10 Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 11 R. S. Mulliken, J. Chem. Phys. 1955, 23, 1833-1840.
- 12 R. S. Mulliken, J. Chem. Phys. 1955, 23, 1841-1846.
- 13 P. O. Löwdin, J. Chem. Phys. 1950, 18, 365-375.
- 14 F. L. Hirshfeld, *Theor. Chim. Acta* 1977, **44**, 129-138.
- 15 A. V. Marenich, S. V. Jerome, C. J. Cramer, D.G. Truhlar, J. Chem. Theory Comput. 2012, **8**, 527-541.
- 16 P. Bultinck, C. V. Alsenoy, P. W. Ayers, R. Carbó-Dorca, J. Chem. Phys., 2007, 126, 144111.
- 17 K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs; Theor. Chem. Acc. 1997, 97, 119.
- 18 ADF 2018, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, E.J. Baerends, T. Ziegler, A.J. Atkins, J. Autschbach, O. Baseggio, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, L. Cavallo, C. Daul, D.P. Chong, D.V. Chulhai, L. Deng, R.M. Dickson, J.M. Dieterich, D.E. Ellis, M. van Faassen, L. Fan, T.H. Fischer, A. Förster, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A. Goez, A.W. Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, S. Gusarov, F.E. Harris, P. van den Hoek, Z. Hu, C.R. Jacob, H. Jacobsen, L. Jensen, L. Joubert, J.W. Kaminski, G. van Kessel, C. König, F. Kootstra, A. Kovalenko, M.V. Krykunov, E. van Lenthe, D.A. McCormack, A. Michalak, M. Mitoraj, S.M. Morton, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, M. Pavanello, C.A. Peeples, P.H.T. Philipsen, D. Post, C.C. Pye, H. Ramanantoanina, P. Ramos, W. Ravenek, J.I. Rodríguez, P. Ros, R. Rüger, P.R.T. Schipper, D. Schlüns, H. van Schoot, G. Schreckenbach, J.S. Seldenthuis, M. Seth, J.G. Snijders, M. Solà, M. Stener, M. Swart, D. Swerhone, V. Tognetti, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo, A.L. Yakovlev

- 19 A. V. Luzanov, A. A. Sukhorukov, and V.E. Umanskii, *Theor. Exp. Chem.* 1976, **10**, 354–361.
- 20 M. Head-Gordon, A. M. Grana, D.Maurice and C. A. White, J. Phys. Chem. 1995, 99, 14261–14270.
- 21 G. A. Zhurko, Chemcraft 1.80 (build 523b) graphical program for visualization of quantum chemistry computations. (<u>https://chemcraftprog.com</u>).
- 22 T. Ziegler and A. Rauk, Theor. Chim. Acta 1977, **46**, 1-10.
- 23 T. Ziegler and A. Rauk, Inorg. Chem. 1979, 18, 1558-1565.
- 24 T. Ziegler and A. Rauk, Inorg. Chem. 1979, 18, 1755-1759.
- 25 S. Grimme, J. Comput. Chem. 2004, **25**, 1463-1473.
- 26 S. Grimme, J. Comput. Chem. 2006, 27, 1787-1799.
- 27 F. Plasser and H. Lischka, J. Chem. Theory Comput. 2012, 8, 2777-2789.
- 28 F. Plasser, S. A. Bäppler, M. Wormit and A. Dreuw, J. Chem. Phys. 2014, 141, 024107.
- 29 A. V.Luzanov and O.A. Zhikol, Int. J. Quantum Chem. 2010, **110**, 902-924.
- 30 A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 1993, 2, 799–805.
- 31 J. Tomasi, B. Mennucci and R. Cammi, *Chem. Rev.* 2005, **105**, 2999-3093.
- 32 A.A. Voityuk and S.F. Vyboishchikov, *Phys. Chem. Chem. Phys.* 2019, **21**, 18706-18713.
- 33 S.F. Vyboishchikov and A.A. Voityuk, *Phys. Chem. Chem. Phys.* 2020, 22, 14591-14598.
- 34 A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 1993, **2**, 799–805.
- 35 J. L. Pascual-Ahuir, E. Silla, and I. Tuñón, J. Comp. Chem. 1994, 15, 1127–1138.
- 36 A. Klamt, J. Phys. Chem. 1996, 100, 3349-3353.
- 37 R. A. Marcus and N. Sutin, Biochim. Biophys. Acta, Rev. Bioenerg. 1985, 811, 265-322.
- 38 A. A. Voityuk and N. Rösch, J. Chem. Phys. 2002, **117**, 5607-5616.
- 39 A. A. Voityuk, Phys. Chem. Chem. Phys. 2012, 14, 13789-13793.
- 40 J. Ulstrup, J. Jortner, J. Chem. Phys. 1975, 63, 4358-4368.
- 41 J. Jortner, J. Chem. Phys. 1976, 64, 4860-4867.
- 42 R. F. W. Bader, Chem. Rev. 1991, 91, 893–928.
- 43 R. F. W. Bader, Atoms in Molecules: A Quantum Theory; International Series of Monographs on Chemistry 22; Oxford University Press: Oxford, U.K., **1990**.
- 44 C. F. Matta, N. Castillo and R. J. Boyd, J. Phys. Chem. B 2006, 110, 563–578.
- 45 C. R. Wick and T. Clark, J. Mol. Model. 2018, 24, 142.
- 46 P. S. V. Kumar, V. Raghavendra and V Subramanian, J. Chem. Sci. 2016, 128, 1527–1536.
- 47 Keith, T. A. AIMAII, version 14.06.21; TK Gristmill Software: Overland Park, KS, **2014**.
- 48 E. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. Cohen and W. Yang, J. Am. Chem. Soc. 2010, **132**, 6498–6506.
- 49 J. Contreras-García, E. Johnson, S. Keinan, R. Chaudret, J. Piquemal, D. Beratan and W. Yang, J. Chem. Theory Comput. 2011, **7**, 625–632.
- 50 J. Contreras-García, W. Yang and E. Johnson, J. Phys. Chem. A, 2011, **115**, 12983–12990.
- 51 T. Lu and F. Chen, J. Comput. Chem. 2012, **33**, 580-592.