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Experiment section

Chemicals and Materials

All chemicals were purchased and used without further purification. Platinum

acetylacetonate (Pt(acac)2, ≥99.98%), cetyltrimethylammonium bromide (CTAB,

≥98%), and cupric acetylacetonate, (Cu(acac)2) were bought from Sigma-Aldrich CO.,

Ltd (America). Oleylamine (OAM, 80-90%) and methylene blue (MB, 99%) were

supplied by Aladdin Co., Ltd (Shanghai, China).

Fabrication of COPC-Nfs

The COPC-Nfs nanoparticles were fabricated by a solvothermally method via our

previous report[1, 2]. Typically, 39.5 mg Pt(acac)2, 130.0 mg Cu(acac)2, and 750.0 mg

CTAB were dissolved in 30.0 mL oleylamine, then the mixture was added into a

teflon-lined high-pressure reaction kettle (50 mL) in a 170 oC oil bath for continuous

48 h. The autoclave was then cooled down to room temperature. The black products

were collected by centrifugation (3500 rpm, 5 min) and re-dispersed in cyclohexane,

the obtained black nanoparticles was the oleaten-capped COPC-Nfs. Then the

solution was regulated to pH 4.0 by 0.1 M HCl solution. The nanoparticles are kept in

50 oC suspension for 5 h to remove the superficial oleylamine on the surface of PtCu

nanoframes. The oleate-free COPC-Nfs were finally collected with a centrifuge

(10000 rpm, 5 min) and washed with acetone and ethanol every 6 times.

Characterization of COPC-Nfs

The morphological feature of the obtained nanoframes was monitored by SEM

(Nova-400, FEI), TEM (LIBRA 200-FEG, Zeiss) and HAADF-STEM (Titan G2
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80-200, FEI). The crystalline structure of the nanoagents was measured by the XRD

spectrograph (D/max 2500-PC, Rigaku). The elementary composition of the

nanocomposites was recorded by an XPS Spectrometer (Quantera II, ULVAC-PHI).

Photothermal thermogenesis of COPC-Nfs

The UV-vis-NIR absorption of the nanoagents was detected by a UV-vis-NIR

spectrophotometer (NanoDrop One, Thermo). Then the COPC-Nfs nanoframes with

various concentrations 50, 100, 300 and 600 μg∙mL-1) were treated by 808 nm NIR

laser (2.0 W∙cm-2, 5 min). A thermal infrared imager was used in this study to record

the temperature variation. Next, the thermogenesis stability of the obtained COPC-Nfs

was further investigated by a 6 on-off cyclic photothermal thermogenesis experiment.

Monitoring the production of Hydroxyl radicals (•OH)

To detect the Hydroxyl radical levels induced by COPC-Nfs under DC and NIR

laser treatment, we used 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) as the •OH

specific spin-trapping agent to determine the generation of •OH reactive oxygen.

Typically, the electrolyte is the MB-H solution (solvent: H2O, 1.0 L), the electrode

area is 19.625 mm2 (radius: 2.5 mm). Then DMPO (0.1 mL, 0.3 M) was added to the

culture plate. Finally, the DMPO-OH adduct of 1:2:2:1 characteristic peak was

recorded by ESR spectrograph immediately.

Statistical analysis

All digital data were analyzed with Origin (version 7.5) via one-way variance

analysis and Students' t-test. The confidence levels were set as 95% and 99%.
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Fig. S1. Particle size distribution of the as-synthesized COPC-Nfs: a) diagonal length,

b) edge breadth and c) feet length, respectively.
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Fig. S2. Atomic arrangement of the obtained COPC-Nfs on the n-(111)-(111)

surfaces.
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Fig. S3. XPS spectra of Cu 2p of the as-synthesized COPC-Nfs.
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Fig. S4. UV-Vis absorbance spectrum of the as-synthesized COPC-Nfs.
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Fig. S5. Zeta potential of COPC-Nfs at various states.
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Fig. S6. Degradation of MB-H under different pH by using COPC-Nfs that treated

with DC and NIR laser.
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Fig. S7. Decoloration variance during the dye degradation process under NIR laser

irradiation, inset: temperature-dependent Uv-Vis spectrum of dye degradation.
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Fig. S8. TOC results for the dye degradation by using COPC-Nfs under different

processed strategies.
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Fig. S9. Reusability of COPC-Nfs that treated with DC and NIR laser for MB-H

removal within 10 cycles.
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Fig. S10. H2O2 generation profiles triggered by different naonocatalysts under DC

treatment.
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Table S1. Photo degradation of Methylene Blue with different nanocatalysts.

Catalyst Cdye

(mg/L)

Catalyst

(g/L)

Irradiation

time (min)

Wavelength

(nm)

Degradation

(%)

Ref.

MnFe2O4 7 0.30 120 Visible 15.1 3

MgFe2O4 7 0.60 180 400-700 nm 26.0 4

ZnFe2O4 10 0.60 360 400-700 nm 32.0 4

CaFe2O4 10 1.00 360 >420 nm 28.0 5

BaFe12O19 10 1.00 360 420-700 nm 26.0 6

COPC-Nfs 10 0.30 30 808 nm 43.9 This

work
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Table S2. Photo-electro degradation of dye with different nanocatalysts.

Catalyst Dye type Cdye DC Power

(W)

Time

(min)

Degradation

(%)

Ref.

CNP/B-

BiVO4/WO3

Orange II 50 mg/L / 180 92.0 7

Fe (OH)2+

/Fe (III)

Acid Black

172

200 mg/L / 30 97.4 8

B-doped

TiO2NTs

Naphthol

yellow S

50 ppm 300 120 100 9

GR/b-CD Bromophenol

blue

20 mg/L 300 180 91.5 10

TiO2 Methylene blue 10 mg/L 500 180 22.4 11

Co/TiO2 Methylene blue 10 mg/L 500 120 74.2 11

COPC-Nfs Methylene blue 10 mg/L 500 30 99.2 This

work
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