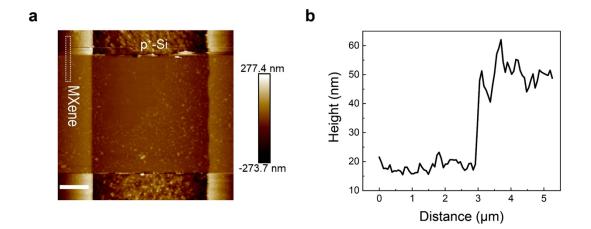
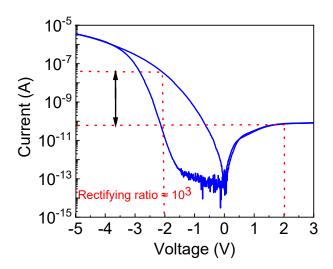
Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

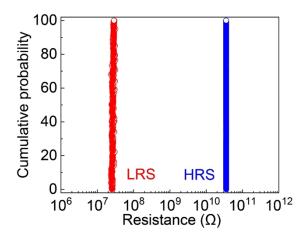
Uniform self-rectifying resistive random access memory based on MXene-TiO₂ Schottky junction

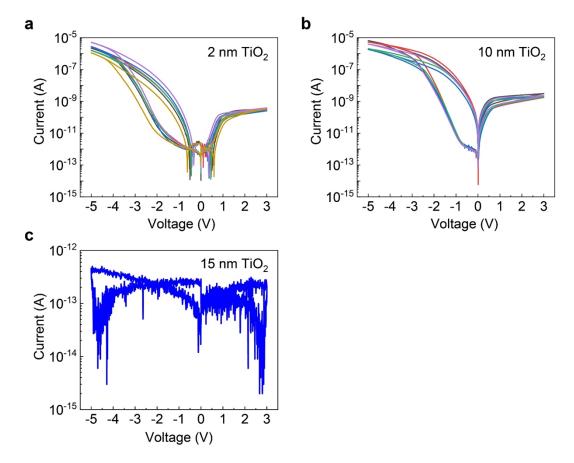

Chao Zang^{1,2#}, Bo Li^{1,2#}, Yun Sun^{1*}, Shun Feng^{1,3}, Xin-Zhe Wang^{1,2}, Xiaohui Wang^{1,2*}, Dong-Ming Sun^{1,2*}

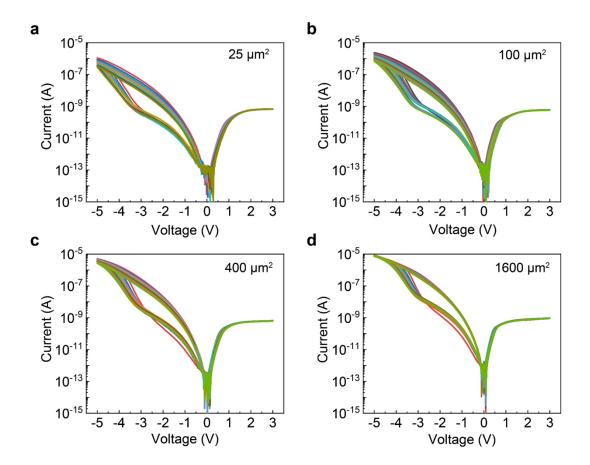
¹Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.

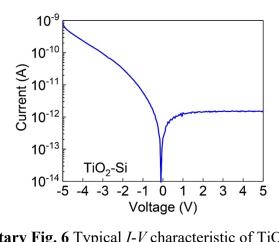

²School of Material Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016, China.

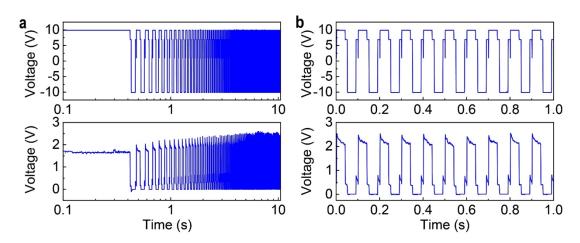
³School of Physical Science and Technology, ShanghaiTech University, 393 Huaxiazhong Road, Shanghai, 200031, China.

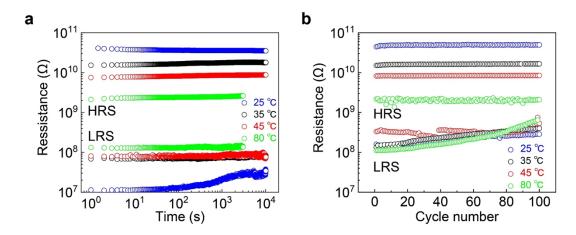

*These authors were equal major contributors to this work.

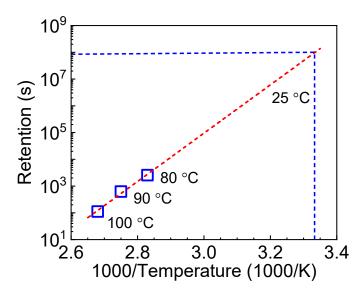

Supplementary Fig. 1 (a) AFM image of the morphology of MXene film. Scale bar, 2 μ m. (b) Height profile along the white dashed line in (a), indicating a thickness of 25 nm MXene.

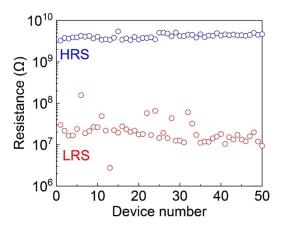

Supplementary Fig. 2 Typical I-V characteristic of an MXene-TiO₂-Si RRAM with a rectifying ratio of 10^3 obtained at 2 V and -2 V.

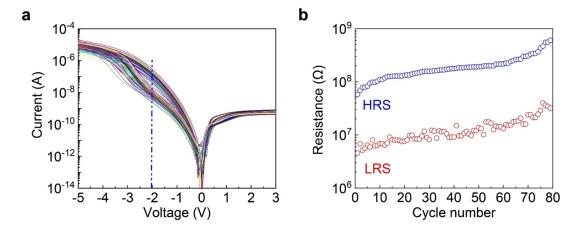

Supplementary Fig. 3 The read disturbance under 2 V/-2 V for HRS and LRS.

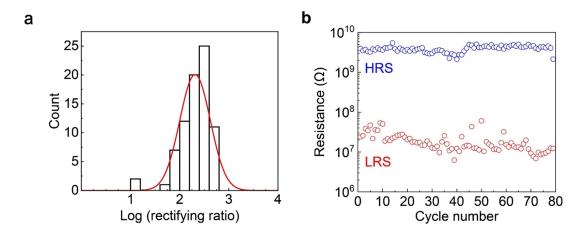

Supplementary Fig. 4 *I-V* characteristics of MXene-TiO₂-Si RRAMs with different thickness of TiO₂. (a) 2 nm, (b) 10 nm, (c) 15 nm.

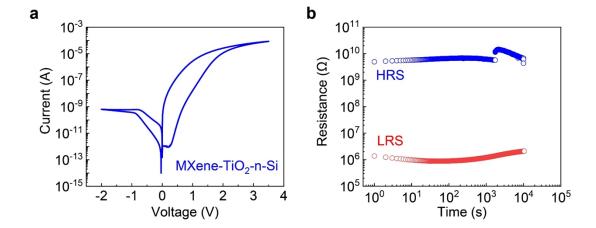

Supplementary Fig. 5 Typical *I-V* characteristics of MXene-TiO₂-Si RRAMs with different resistive area, indicating the bipolar SET and RESET processes. (a) 25 μ m², (b) 100 μ m², (c) 400 μ m², (d) 1600 μ m².

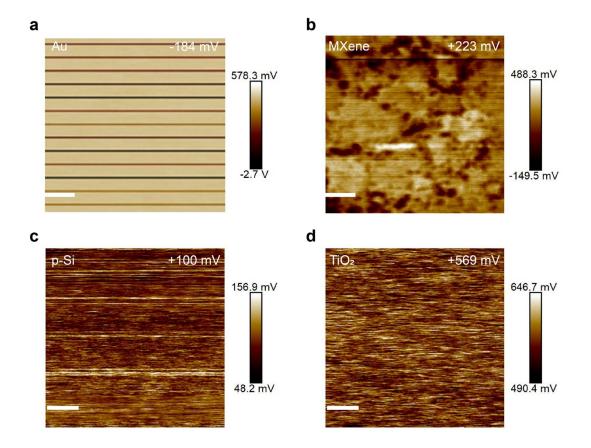

Supplementary Fig. 6 Typical I-V characteristic of TiO₂-Si junction.

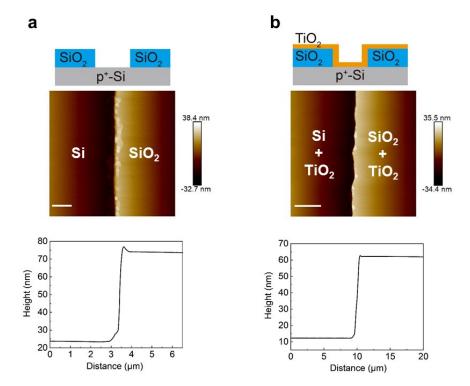

Supplementary Fig. 7 (a) Endurance test performed with more than 100 voltage sweep cycles in 10 s. (b) About 10 cycles in 1s cut from (a).

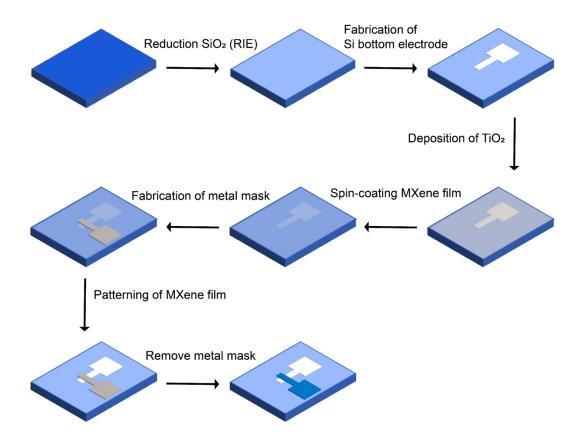

Supplementary Fig. 8 (a) Retention and (b) endurance characteristics at the different temperatures.


Supplementary Fig. 9 Temperature dependence of the retention time (s) follows the Arrhenius relation. Retention time at 25 °C are extrapolated from the linear fitting of measurement results (blue squares).


Supplementary Fig. 10 Device-to-device variation of HRS and LRS at the read voltage of 2 V, respectively.


Supplementary Fig. 11 (a) The *I-V* characteristics of a single RRAM device with 80 cycles. (b) The extracted cycle-to-cycle distribution of HRS and LRS at 2 V read voltage. The resistance states can be also distinguished through the current on-off ratio more than 10


Supplementary Fig. 12 The statistical cycle-to-cycle variation of (a) rectifying ratio performed by a logarithmic operation and (b) HRS and LRS, respectively.


Supplementary Fig. 13 (a) Self-rectifying behavior and (b) retention characteristics of the MXene-TiO₂-n-Si.

Supplementary Fig. 14 The Kelvin probe force microscopy (KPFM) potential map images and numerical analysis of (a) Au (scale bar: 840 nm), (b) MXene (scale bar: 1 μ m). (c) p⁺-Si (scale bar: 1 μ m) and (d) TiO₂ (scale bar: 1 μ m). The potentials of Au, MXene, p⁺-Si, and TiO₂ were -184 mV, +223 mV, +100 mV and +569 mV, respectively. The work function of Au is 5.2 eV. Therefore, the work function of MXene is 5.2 – 0.184 – 0.223 = 4.893 eV, p⁺-Si is 5.2 – 0.184 – 0.1 = 5.016 eV and TiO₂ is 5.2 – 0.184 – 0.569 = 5.547 eV. (KPFM probe: SCM-PIT-V2, 0.01-0.025 Ohm-cm Antimony (n) doped Si).

Supplementary Fig. 15 The schematic, corresponding AFM and height of Si electrode (a) before and (b) after 5-nm-TiO₂ deposited by ALD. Scale bar, 1 μ m, 4 μ m.

Supplementary Fig. 16 Fabrication flowchart of MXene-TiO₂-Si self-rectifying RRAMs.

Table S1. Performance comparison about TiO₂-based RRAM devices.

Structure	on/off ratio	rectifying ratio	Retention (s)	endurance
Ti/TiO ₂ /Pt ^[1]	10^{3}	10^{5}		1000
$Cu/Ti/HfO_2/TiO_2/TiN^{[2]}$	3×10^3			200
$TaO_x/TiO_2/TaO_x^{[3]}$	10^{3}		10^{4}	10^{10}
$TiN/Ti/TiO_x/HfO_x/TiN^{[4]}$	10^{3}		10^{4}	
$Pt/In,Sn_2O_3/TiO_2/Pt^{[5]}$	160			40
$TiN/TiO_x/Al_2O_3/IrO_x^{[6]}$	10	10	10^{5}	1000
$TiN/TiO_x/Al_2O_3/IrO_x^{[7]}$	30			10^{6}
My work	10^3	10^3	10^{4}	100

^[1] Appl. Phys. Lett. 2020, 96, 262901.

^[2] Advanced Electronic Materials 2020, 6 (9), 2000488 .

^[3] ACS Nano 2012, 6, 9, 8166-8172.

^[4] Appl. Phys. Lett. 2012, 101, 103506.

^[5] Appl. Phys. Lett. 2008, 92, 162904.

^[6] IEEE Transactions on Electron Devices 2018, 65 (3), 957-962 □.

^[7] ACS omega 2017, 2 (10), 6888-6895□.