Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2022 Supporting Information

Synergies in Antimicrobial Treatment by a Levofloxacin-Loaded Halloysite and Gold Nanoparticles with a Conjugation to a Cell-Penetrating Peptide

Reza Taheri-Ledari^{1,*}, Mohammad Reza Ahghari¹, Fatemeh Ansari¹, Mohadeseh Forouzandeh-Malati¹, Seyedeh Shadi Mirmohammadi¹, Simindokht Zarei-Shokat¹, Sorour Ramezanpour², Wenjie Zhang³, Ye Tian^{*,4} and Ali Maleki^{*,1}

¹ Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.

² Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.

³ Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu 610041, Sichuan Province, P.R. China.

⁴ State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd section of South Renmin Road, Chengdu 610041, P.R. China. E-mail: <u>tianye@scu.edu.cn.</u>

*Corresponding authors: (Reza Taheri-Ledari) E-mail: <u>Rezataheri13661206@gmail.com</u>, <u>R_Taheri94@alumni.iust.ac.ir</u>; (Ye Tian) E-mail: <u>tianye@scu.edu.cn</u>; (Ali Maleki) E-mail: <u>maleki@iust.ac.ir</u>; Fax: +98-21-73021584; Tel: +98-21-73228313.

Table of Content

Content	Page
Figure S1. Figure S1. LC-MS spectrum and chemical structure of the synthesized CPP sequence.	S2
Calculation of the released lvx and drug content of lvx@HNT/Au-CPP nano-cargo	S3
Figure S2. Digital photos of the colony-count disks related to the controls.	S4

Supporting Information

Figure S1. LC-MS spectrum and chemical structure of the synthesized CPP sequence.

LC-MS result:

ESI technique: $[M+1]^+ = m/z$ 906.60000 and $[M+2H]^{2+}/2 = m/z$ 453.90000.

Supporting Information

Calculation of the released lvx and drug content of lvx@HNT/Au-CPP nano-cargo

$$X = \frac{Y - 0.1227}{0.2941} \times 100 \qquad (Eq. 1)$$

Entry 4 (pH = 4.6/LSPR conditions): Y = 0.593 (the highest value of the UV-Vis absorbance activity in release profile)

 $X = 159.91 \sim 160$ ppm (the concentration of the released lvx, obtained from Eq. 1)

160 ppm = 0.16 mg/mL = 1.6 mg in 10 mL (since 10 mg of lvx@HNT/Au–CPP was dispersed in 10 mL buffer medium)

 $\frac{1.6 mg (released lvx in 10 mL buffer)}{10 mg (initial amount of lvx@HNT/Au-CPP} \times 100 = 16 wt\%$

It means that ca. 16.0 wt% of the prepared lvx@HNT/Au–CPP nano-cargo is formed by the loaded lvx.

In the same way;

Entry 1 (pH = 6.8/37 °C): Y = 0.522 → X = 135.77 ppm → 0.13577 mg/mL → 1.3577 mg/ 10 mL → 1.357 mg/ 10 mg × 100 = 13.57 % => 13.57 % / 16.0 % × 100 = **84.5%**

Entry 2 (pH = 8.0/37 °C): Y = 0.540 → X = 141.89 ppm → 0.1418 mg/mL → 1.418 mg/ 10 mL → 1.418 mg/ 10 mg × 100 = 14.18 % => 14.18 % / 16.0 % × 100 = 88.6%

Entry 2 (pH = 4.6/37 °C): Y = 0.542 → X = 142.57 ppm → 0.1425mg/mL → 1.425 mg/ 10 mL → 1.425 mg/ 10 mg × 100 = 14.25 % => 14.25 % / 16.0 % × 100 = **89.0%**

Supporting Information

Figure S2. Digital photos of the colony-count disks related to the controls.

