## Supporting Information for

## Synthesis and Properties of Multi-Functionalized Graphene Quantum Dots with Tunable Photoluminescence and Hydrophobicity from Asphaltene and Its Oxidized and Reduced Derivatives

Maryam Aghajamali<sup>a,\*</sup>, Mariana Arpini Vieira<sup>b,c</sup>, Razieh Firouzi-haji<sup>b</sup>, Kai Cui<sup>c</sup>, Jae-Young Cho<sup>c</sup>, Adam Johan Bergren<sup>c,d,\*</sup>, Hassan Hassanzadeh<sup>a,\*</sup>, and Alkiviathes Meldrum<sup>b,\*</sup>

<sup>a</sup> Department of Chemical & Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada

<sup>b</sup> Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada

° Nanotechnology Research Centre, National Research Council of Canada, Edmonton, AB T6G 2M9, Canada

<sup>d</sup> Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada

\***Corresponding authors:** M. Aghajamali (<u>maryam.aghajamali@ucalgary.ca</u>); A. J. Bergren (<u>adam.bergren@nrc.ca</u>); H. Hassanzadeh (<u>hhassanz@ucalgary.ca</u>); A. Meldrum (<u>ameldrum@ualberta.ca</u>).



Figure S1. Survey XPS of asphaltene (ASP), asphaltene oxide (AO), and reduced asphaltene oxide (RAO).



Figure S2. GQD size distributions obtained from TEM images by counting 200 particles.



**Figure S3.** Representative HRTEM image of R-C with the lattice spacing of 0.35 nm characteristic of the graphite (002) lattice fringe.



Figure S4. (a) AFM surface plots showing different GQDs.



**Figure S4. (b)** AFM line profiles (selected randomly) corresponding to the images in Fig. S4a.



**Figure S5.** (a) Luminescence decays for all GQD samples. A-M has the longest lifetime and O-C, O-M, and R-C have the shortest. The other 5 samples are clustered in between the labeled curves but are very close to the latter three. (b) compares A-M with R-M, where we can see the change in slope of the R-M decay denoted by the arrow.



Figure S6. Photoluminescence spectra of GQDs in original solvents and after the first solvent exchange. The concentration of all samples is  $\sim 1 \text{ mg/mL}$ .



Figure S7. Photoluminescence spectra of GQDs in original solvents and after the second solvent exchange. The concentration of all samples is  $\sim 1 \text{ mg/mL}$ .



Figure S8. Concentration-dependent photoluminescence spectra of GQDs.