

16

17 Fig. S1 (a) Raman spectrum of TiO₂ and Co@TiO₂-C, (b)the structure of arsenazo3 [ARZ3]

18 and uranium/arsenaso3 [U(VI)-ARZ3] complex.

19

- 20 Fig. S2 The photocatalytic removal data using Co@TiO2-C at varied pH values over a period
- 21 of 60 min (v= 10 ml, m= 10mg) (a) 100 mgL⁻¹ U(VI) aqueous solution, (b) 100 mgL⁻¹ U(VI) in
- 22 aqueous solution (10% ethanol), (c) 100 mgL⁻¹ U(VI) + 50 mgL⁻¹ arsenazo 3 and (d) 50 mgL⁻¹
- 23 Arsenazo 3 in aqueous solution.

25 Fig. S3 SEM, EdX and element maping for ARZ3 degarded product

26

27 Fig. S4 SEM, EdX and element maping for U(VI)-ARZ3 complex degarded product.

28

29 Fig. S5 SEM, EdX and element maping for uranium degarded product in 10% ethanol media.

Fig. S6 : XPS spectra of Co@TiO₂-C after photocatalytic reduction of uranium in 10% ethanol.

32 (a) Survey spectrum, (b) Ti 2p XPS spectra, (c) Co 2p XPS spectra, (d) O 1s XPS spectra and

33 (e) C 1s XPS spectra.

Fig. S7 : XPS spectra of Co@TiO₂-C after photocatalytic reduction of uranium in presence of arsenazo3. (a) Survey spectrum, (b) Ti 2p XPS spectra, (c) Co 2p XPS spectra, (d) O 1s XPS

36 arsenazo3. (a) Survey spectrum, (b) Ti 2p XI37 spectra and (e) C 1s XPS spectra.

38 Table S1: Pseudo- first-order parameters of Co@TiO2-C catalysts (0.1 g of 100 mg/L U(VI) in

39 10 mL solution volum and (0.1 g of 50 mg/L arsenazo 3 in 10 mL solution volum.

pН	U(VI) in H ₂ O		U(VI) in 10% ethanol		U(VI)+Arsenazo3		Arsenazo3	
	K	R ²	K	R ²	K	R ²	K	R ²
2	8.6 x10 ⁻³	0.99	2.859 x 10 ⁻²	0.95	2.458 x 10 ⁻²	0.98	3.981 x 10 ⁻²	0.99
4	1.136 x 10 ⁻²	0.98	4.017 x 10 ⁻²	0.97	3.57 x 10 ⁻²	0.99	6.781 x 10 ⁻²	0.99

6	1.151 x 10 ⁻²	0.96	9.97 x 10 ⁻²	0.99	6.155 x 10 ⁻²	0.99	4.956x 10 ⁻²	0.98
8	1.254 x 10 ⁻²	0.97	4.579 x 10 ⁻²	0.95	4.311 x 10 ⁻²	0.98	2.839x 10 ⁻²	0.98

40 **Table S2:** Comparison of photocatalytic efficiency of Co@TiO₂-C composites with other 41 reported photocatalysts for uranium removal.

Catalyst	Active	C ₀	Efficacy	Time	Ref.
	Compound Target	(mg/L)	(%)	(min)	
ZIF-8/g- C_3N_4 (100mg)	(100 ml) U(VI)	10	90	60	[S1]
gC ₃ N ₄ /TiO ₂ (200 mg)	(50 ml) U(VI)	10	99	30	[S2]
$g-C_3N_4/LaFeO_3$ (30 mg)	(15 ml) U(VI)	10	96.7	120	[S3]
$mGO/g-C_3N_4$ (50 mg)	(30 ml) U(VI)	20	96.02	30	[S4]
C ₃ N ₅ /RGO (10 mg)	(20 ml) U(VI)	10	94.9	100	[S5]
$g-C_3N_4/TiO_2(250 \text{ mg})$	(100 ml) U(VI),	20	82.66%,	240	[S6]
	As(III)	20	41.18%		
Sn-doped In_2S_3 (150 mg)	(100 ml) U(VI)	60	90	60	[S7]
Fe ₂ O ₃ -GO (400 mg)	(100 ml) U(VI)	5	76	180	[S8]
TiO ₂ (001) (200 mg)	(10 ml) U(VI)	24	100	180	[S9]
$Ti_3C_2/SrTiO_3$ (330 mg)	(60 ml) U(VI)	50	77	180	[S10]
Nb/TiNFs (200 mg)	(100 ml) U(VI)	50	46.5	240	[S11]
$ZnFe_2O_4(200 \text{ mg})$	(12.5 ml) U(VI)	50	95	40	[S12]
Co/TiO ₂ @C (10 mg)	(10 ml) U(VI)	1000	96.4	60	This work
Co/TiO ₂ @C (10 mg)	(10 ml) U(VI)-ARZ3	100 U(VI)/	99.4	60	This work
	complex	50			
	-	Arsenazo3		[

42

43

44 Referances

- 45 [S1] Qiu, M., Z. Liu, S. Wang, and B. Hu, The photocatalytic reduction of U (VI) into U (IV)
 46 by ZIF-8/g-C₃N₄ composites at visible light. Environmental Research, 2021. 196: p.
 47 110349.
- 48 [S2] Liu, Y., S. Wu, J. Liu, S. Xie, and Y. Liu, Synthesis of gC₃N₄/TiO₂ nanostructures for
 49 enhanced photocatalytic reduction of U (vi) in water. RSC advances, 2021. 11(8): p.
 50 4810-4817.
- [S3] Li, S., X. Yang, Z. Cui, Y. Xu, Z. Niu, P. Li, D. Pan, and W. Wu, Efficient photoreduction
 strategy for uranium immobilization based on graphite carbon nitride/perovskite oxide
 heterojunction nanocomposites. Applied Catalysis B: Environmental, 2021. 298: p.
 120625.
- [S4] Dai, Z., Y. Sun, H. Zhang, D. Ding, and L. Li, Photocatalytic reduction of U (VI) in
 wastewater by mGO/g-C₃N₄ nanocomposite under visible LED light irradiation.
 Chemosphere, 2020. 254: p. 126671.
- [S5] Wu, L., X. Yang, T. Chen, Y. Li, Q. Meng, L. Zhu, W. Zhu, R. He, and T. Duan, Three dimensional C₃N₅/RGO aerogels with enhanced visible-light response and electron-hole
 separation efficiency for photocatalytic uranium reduction. Chemical Engineering
 Journal, 2022. 427: p. 131773.
- [S6] Jiang, X.-H., Q.-J. Xing, X.-B. Luo, F. Li, J.-P. Zou, S.-S. Liu, X. Li, and X.-K. Wang,
 Simultaneous photoreduction of Uranium (VI) and photooxidation of Arsenic (III) in
 aqueous solution over g-C₃N₄/TiO₂ heterostructured catalysts under simulated sunlight
 irradiation. Applied Catalysis B: Environmental, 2018. 228: p. 29-38.

- [S7] Feng, J., Z. Yang, S. He, X. Niu, T. Zhang, A. Ding, H. Liang, and X. Feng,
 Photocatalytic reduction of Uranium (VI) under visible light with Sn-doped In₂S₃
 microspheres. Chemosphere, 2018. 212: p. 114-123.
- 69 [S8] Guo, Y., Y. Guo, X. Wang, P. Li, L. Kong, G. Wang, X. Li, and Y. Liu, Enhanced
 70 photocatalytic reduction activity of uranium (vi) from aqueous solution using the Fe₂O₃71 graphene oxide nanocomposite. Dalton Transactions, 2017. 46(43): p. 14762-14770.
- [S9] Chen, K., C. Chen, X. Ren, A. Alsaedi, and T. Hayat, Interaction mechanism between
 different facet TiO₂ and U (VI): experimental and density-functional theory
 investigation. Chemical Engineering Journal, 2019. 359: p. 944-954.
- [S10] Deng, H., Z.-j. Li, L. Wang, L.-y. Yuan, J.-h. Lan, Z.-y. Chang, Z.-f. Chai, and W.-q.
 Shi, Nanolayered Ti₃C₂ and SrTiO₃ composites for photocatalytic reduction and removal of uranium (VI). ACS Applied Nano Materials, 2019. 2(4): p. 2283-2294.
- [S11] Liu, X., P. Du, W. Pan, C. Dang, T. Qian, H. Liu, W. Liu, and D. Zhao, Immobilization
 of uranium (VI) by niobate/titanate nanoflakes heterojunction through combined
 adsorption and solar-light-driven photocatalytic reduction. Applied Catalysis B:
 Environmental, 2018. 231: p. 11-22.
- [S12] Liang, P.-l., L.-y. Yuan, H. Deng, X.-c. Wang, L. Wang, Z.-j. Li, S.-z. Luo, and W.-q.
 Shi, Photocatalytic reduction of uranium (VI) by magnetic ZnFe₂O₄ under visible light.
 Applied Catalysis B: Environmental, 2020. 267: p. 118688.
- 85
- 86
- 87
- 88
- 89