Supplementary Information

Hyperspectral Dark Field Optical Microscopy for Orientational Imaging of a Single Plasmonic Nanocube using Physics-based Learning Method

Nishir Mehta¹, Amirreza Mahigir^{2,3}, Georgios Veronis^{2,3}, Manas Ranjan Gartia^{1,*}

¹Department of Mechanical and Industrial Engineering, ²School of Electrical Engineering and

Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA

³Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana

70803, USA

*E-mail: <u>mgartia@lsu.edu</u>

Figure S1. Calculated **(a)** absorption, and **(b)** scattering spectra of a single nanocube in water as a function of the nanocube size. (c) Variation of scattering peak positions as a function of nanocube edge length. The corresponding full-width half-maximum (FWHM) is shown as shaded area. (d) Contribution of scattering and absorption to the extinction spectra as a function of nanocube size.

Figure S2. (a-c) Representative SEM images and their corresponding hyperspectral images used for correlative microscopy analysis. (d) Representative image of a hyperspectral image from a wide field of view showing many nanocubes.