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1 Sample preparation

1.1 WSe2/hBN/HOPG hetero-stack

(a) (b)

(c)

1L WSe2

hBN

hBN

(d)

Figure 1S: Optical microscope images of few layer hBN on (a) PDMS, (b) HOPG and monolayer
WSe2 on (c) PDMS, (d) hBN/HOPG. Scale bar in figure is 20 µm.
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Monolayer WSe2 and few layer hBN are mechanical exfoliated from their bulk materials via
Nitto tape on PDMS stamp (as shown in Fig. 1S (a) and (c)). WSe2 is firstly characterized by
PL and Raman spectroscopy to identify the layer numbers before transfer. After confirming the
layer numbers, the HOPG top layer is cleaved to ensure a clean surface. The hBN and WSe2 are
immediately transferred bottom-to-top with a all-dry deterministic transfer technique[1].

1.2 WSe2/graphene/hBN/HOPG hetero-stack
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Figure 2S: Optical microscope images of few layer hBN on (a) PDMS, (b) HOPG, graphene on (c)
PDMS, (d) hBN/HOPG and monolayer WSe2 on (e) PDMS, (f) graphene/hBN/HOPG. Scale bar
in figure is 20 µm.

The sample preparation procedure is same as mentioned above.
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2 Stokes shift of monolayer WSe2
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Figure 3S: (a) Micro PL and micro reflectance contrast spectra of monolayer WSe2. (b) zoomed
in for 1.60-1.70 eV.

Micro reflectance contrast measurements are carried out with a Zeiss AxioImager.M2m micro-
scope in epi-illumination configuration equipped with a 50x, 0.75NA objective, a Zeiss HAL 100
illuminator-12 V/ 100W white-light source with intensity control and coupled to a J&M Analytik
AG Tidas S MSP 800 spectrometer operable in the spectral range 200-980 nm [2, 3].

For the ultra-thin film on a transparent substrates, ∆R/R is predominantly determined by the
imaginary part of the dielectric function, which is proportional to the optical absorption[4–7].

We measured the micro PL and micro reflectance contrast spectra to extract the Stokes shift
of monolayer WSe2 to make sure that it is reasonable to consider the PL peak energy position
corresponding to the exciton energy. As shown in Fig. 3S, we only observe a ∼2 meV Stokes shift,
which makes it fair enough to consider the exciton PL peak position as the exciton energy.

3 Extended information of the PL maps

3.1 Fitting parameters for the PL spectrum

WSe2/hBN/HOPG Position / meV FWHM / meV
X0 1647±2 37±2
XT 1615±2 57±2

WSe2/HOPG Position / meV FWHM / meV
X0 1585±2 42±2
XT 1549±2 46±2

Note that the errors from fitting are less than 1 meV, which is well below the measuring limit
at room temperature. We measured a Hg-Ar calibration lamp to determine our instrumental
broadening and considered the instrumental broadening as the error.
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3.2 Histogram of the WSe2/HOPG/hBN PL map
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Figure 4S: Histogram of the WSe2/hBN/HOPG PL peak position map in figure. 1(b) in the main
text.

3.3 Effect of bubbles on the PL spectra
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Figure 5S: (a) optical microscope image and (b) PL intensity map of the WSe2/hBN/HOPG hetero-
stack. (c) Typical PL spectra of the monolayer WSe2 with and without bubble. Inset: as-measured
(not-normalized) PL spectra.
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3.4 PL map of WSe2/graphene/hBN/HOPG hetero-stack
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Figure 6S: (a) optical microscope image, (b) PL intensity map and (c) PL peak position map of
the WSe2/graphene/hBN/HOPG hetero-stack. Scale bar in figure is 5 µm.

4 High-resolution Raman spectra
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Figure 7S: (a) High-resolution Raman spectra of WSe2/hBN and WSe2/HOPG. (b) Zoomed in for
248-252 cm−1.
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5 AFM and KPFM
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Figure 8S: (a) optical microscope image, (b) AFM height image, and (c) KPFM image of
WSe2/hBN/HOPG hetero-stack.
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Figure 9S: (a) optical microscope image, (b) AFM height image, and (c-d) KPFM image of
WSe2/graphene/hBN/HOPG hetero-stack.
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6 Work function determination of HOPG
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Figure 10S: UPS spectra of HOPG.

We use ultraviolet photoelectron spectroscopy (UPS) to determine the absolute work function
of HOPG [8]. The He-I light source has an energy of 21.2 eV and the secondary electron cutoff
(SEC) is 16.8 eV. The work function of HOPG is 4.4 eV.

7 Mass action model
We estimate the electron concentration using the mass action law associated with trions [9, 10].
In this model the following relation is obtained:

NXne

NX−
=

(
4mXme

πh̄2mX−

)
kBTexp

(
− Eb

kBT

)
(1)

where NX and NX− are the exciton and trion population, respectively. ne is the electron
concentration. me (0.48m0), mX (0.92m0), and mX− (1.40m0) are the effective mass of electron,
exciton, and trion, respectively [11]. Eb (30 meV) is the trion biding energy. The intensity ration
of trion to neutral exciton is expressed as:

IX−

IX
=

γX−

γX
× NX−

NX
=

γX−

γX
× ne(

4mXme

πh̄2mX−

)
kBTexp

(
− Eb

kBT

) (2)

where γX− and γX are the radiative decay rate of trion and exciton. We assume the value
of γX−

γX
is in the same order of magnitude as what has been reported in Ref. [9], the estimated

electron concentration is in the order of 1013 cm−2 when WSe2 is interfaced with HOPG and is
approximately one magnitude smaller when interfaced with hBN or graphene.
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