Electronic Supplementary Information for

Metal Nanoparticle-Decorated Germanane for Selective Photocatalytic Aerobic Oxidation of Benzyl Alcohol

Chuyi Ni¹, Madison Chevalier¹, and Jonathan G.C. Veinot¹

¹Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

Table of Contents

Figure S1.	2
Figure S2.	3
Figure S3.	4
Figure S4	4
Figure S5	5
Table S1	6
Figure S6.	7
Figure S7.	8
Figure S8.	9
Figure S9.	10
Figure S10.	11
Figure S11.	12
Figure S12.	13
Figure S13.	13
Figure S14.	14
Table S2	15
Table S3	15
Table S4	15
Table S5	15
Figure S14.	16
Table S6	17
Table S7	17
Figure S15.	

Figure S1. XRD patterns of (a) Cu@GeNSs, (b) Pd@GeNSs, and (c) Pt@GeNSs. Asterisks correspond to the Ge reflection; Cu, Pd and Pt reflections are from PDF#89-2838,88-2335 and 88-2343.

Figure S2. Representative FTIR spectra of Ge nanosheets before (black) and after (red) Ag deposition.

Figure S3. A representative survey XP spectrum of GeNSs.

Figure S4. A representative high-resolution XP spectrum of Ge 3d region of GeNSs.

Figure S5. Representative survey XP spectra of (a) Au@GeNSs (b) Ag@GeNSs, (c) Cu@GeNSs, (d) Pt@GeNSs and (e) Pd@GeNSs

Table S1.	. Summary	of XPS	data.
-----------	-----------	--------	-------

	Au@GeNSs	Ag@GeNSs	Cu@GeNSs	Pd@GeNSs	Pt@GeNSs
Ge 3d emission	29.8	29.7	29.7	29.8	29.7
(eV)					
Metal emission	83.8	368.2	932.8	335.2	70.7
(eV) ^a	(84.0)	(368.2)	(933.0)	(335.0)	(71.0)
M/Ge ratio [⊳]	0.063	0.081	0.072	0.075	0.058

^a Values in parentheses represent the standard metallic binding energies; ^b The ratios were calculated from the atomic percentage of metal and Ge obtained from the survey spectra in question.

Figure S6. Representative high-resolution XP spectra of (a, d) Cu@GeNSs, (b, e) Pd@GeNSs and (c, f) Pt@GeNSs. Corresponding metal (left) and Ge 3d (right) regions are presented in rows.

Figure S7. Representative DRA (Diffuse reflective absorption) spectra of Ge nanosheets and M@GeNSs.

Figure S8. Representative HRTEM, HAADF-STEM images and EDX mapping of (a-d) Cu@GeNSs, (e-h) Pd@GeNSs, and (i-l) Pt@GeNSs.

Figure S9. Representative average shift histograms for metal nanoparticles on (a) Au@GeNSs (b) Ag@GeNSs, (c) Cu@GeNSs, (d) Pd@GeNSs and (e) Pt@GeNSs.

Figure S10. Representative EDX spectra for (a) Au@GeNSs (b) Ag@GeNSs, (c) Cu@GeNSs, (d) Pd@GeNSs, and (e) Pt@GeNSs

Figure S11. Representative FTIR spectra of the indicated metal nanoparticles.

Figure S12. AQE (apparent quantum efficiency) of the photooxidation of benzyl alcohol to produce benzaldehyde of indicated catalysts after 1 h of reaction.

Figure S13. Representative high-resolution XP spectra of a) Ag 3d regions of Ag@GeNSs after the photooxidation of benzyl alcohol to produce benzaldehyde showing Ag(I) species, (b) Ge 3d regions after photooxidation of benzyl alcohol to produce benzaldehyde.

Figure S14. Representative FTIR spectrum of Ag@GeNSs after the photooxidation of benzyl alcohol to produce benzaldehyde.

	GeNSs	Au@GeNSs	Ag@GeNSs	Cu@GeNSs	Pd@GeNSs	Pt@GeNSs
Conversion (%)	30.7	43.6	83.7	54.6	63.7	80.7
Selectivity (%)	82.4	65.4	73.7	70.4	75.3	79.4
Yield (%)	25.3	28.6	61.6	38.5	48.1	64.1
AQE (%)	2.79	3.97	7.61	4.97	5.79	7.34

Table S2. Summary of photocatalytic oxidation performance of benzyl alcohol to produce benzaldehyde.

Table S3. Comparison of the photocatalytic oxidation of benzyl alcohol to produce benzaldehyde using free metal particles, M@GeNSs, as well as physical mixtures of free metal nanoparticles and GeNSs (MNPs+GeNSs).

Conversion (%)	Au	Ag	Cu	Pd	Pt
M@GeNSs	43.6	83.7	54.6	63.7	80.7
MNPs+GeNSs	35.7	45.6	32.5	50.2	60.3
MNPs	4.85	8.66	3.15	5.22	7.36

Table S4. Representative nanoparticle size distributions for metal nanoparticles and M@GeNSs obtaining from measuring 300 nanoparticles under TEM.

Sizes (nm)	Au	Ag	Cu	Pd	Pt
M@GeNSs	7.7 ± 5.7	13.9 ± 6.7	18.8 ± 7.0	9.0 ± 3.9	2.7 ± 0.8
MNPs	8.3 ± 5.3	14.3 ± 6.1	20.1 ± 6.5	9.2 ± 3.3	3.2 ± 0.6

Table S5. Effect of Ag loading on catalytic performance of Ag@GeNSs in selective oxidation of benzyl alcohol to benzaldehyde.

	1%Ag@GeNSs	2.5%Ag@GeNSs	5%Ag@GeNSs	10%Ag@GeNSs
Conversion (%)	64.6	70.2	83.7	85.4
Selectivity (%)	76.2	74.6	73.7	71.2
Yield (%)	49.2	52.4	61.6	60.8

Figure S14. Proposed mechanism for the presented catalytic activity of M@GeNSs in the photooxidation of benzyl alcohol to produce benzaldehyde.

Catalyst	Irradiation source	T (K)	t(h)	Solvent	Conversion	Selectivity
					(%)	(%)
Ag@GeNSs	Hg lamp	RT	4	N/A	83.7	73.7
	(140 W, >366 nm)					
Ru/g-C ₃ N ₄ ¹	UV LED	RT	4	H ₂ O	73	72
	(220 W, 390 nm)					
Ir/TiO ₂ ²	Hg lamp	333	6	N/A	8.9	92
	(250 W, >315 nm)					
Pt/TiO ₂ ³	Xe lamp	727	2	H ₂ O	87	68
	(250 W, >420 nm)					
Au/CeO ₂ ⁴	Vis LED	RT	10	H ₂ O	52	99
	(220 W, 530 nm)					
Ag/SBA⁵	N/A	595	1	N/A	74.8	85.2
Au-Pd/TiO ₂ ⁶	N/A	393	10	N/A	51.7	76.7
Pd/TiO ₂ ⁷	N/A	363	6	N/A	4.5	85.9
Cu/TiO ₂ ⁸	N/A	393	6	N/A	1.1	99.9
Cu-Pd/TiO ₂ ⁸	N/A	393	6	N/A	35.9	98.7

Table S6. Reported studies on the selective oxidation of benzyl alcohol.

Table S7. Photocatalytic oxidation activity of benzyl alcohol to benzaldehyde and recovery comparison of Ag@GeNS thin films and powders.

	Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5		
Ag@GeNS thin films							
Conversion (%)	80.2	79.9	80.2	79.4	79.2		
Recovery (%)	98.0	97.3	97.1	98.4	98.1		
Ag@GeNS powders							
Conversion (%)	83.7	75.5	61.6	55.2	46.7		
Recovery (%)	87.6	80.7	88.8	83.6	88.3		

Figure S15. (a)Photos of Ge nanosheet thin film before (top) and after (bottom) Ag deposition. High-resolution SEM images of (b) GeNS and (c) Ag@GeNS thin films

Reference

- (1) Lima, M. J.; Tavares, P. B.; Silva, A. M. T.; Silva, C. G.; Faria, J. L. Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde by Using Metal-loaded g-C₃N₄ Photocatalysts. *Catal. Today* **2017**, 287, 70-77,
- (2) Feng, W.; Wu, G.; Li, L.; Guan, N. Solvent-free Selective Photocatalytic Oxidation of Benzyl Alcohol Over Modified TiO2. *Green Chem.* **2011**, 13 (11), 3265
- (3) Zhai, W.; Xue, S.; Zhu, A.; Luo, Y.; Tian, Y. Plasmon-Driven Selective Oxidation of Aromatic Alcohols to Aldehydes in Water with Recyclable Pt/TiO2 Nanocomposites. *ChemCatChem* **2011**, 3, 127–130.
- (4) Tanaka, A.; Hashimoto, K.; Kominami, H. Selective Photocatalytic Oxidation of Aromatic Alcohols to Aldehydes in an Aqueous Suspension of Gold Nanoparticles Supported on Cerium(IV) Oxide under Irradiation of Green Light. *Chem. Commun.* **2011**, 47, 10446–10448.
- (5) Ma, L.; Jia, L.; Guo, X.; Xiang, L. Catalytic Activity of Ag/SBA-15 for Low-temperature Gasphase Selective Oxidation of Benzyl Alcohol to Benzaldehyde. *Chinese J. Catal.* **2014**, 35, 108-119
- (6) Li, X.; Feng, J.; Sun, J.; Wang, Z.; Zhao, W. Solvent-Free Catalytic Oxidation of Benzyl Alcohol over Au-Pd Bimetal Deposited on TiO2: Comparison of Rutile, Brookite, and Anatase. *Nanoscale Res. Lett.* **2019**, 14, 394.
- (7) Sun, J.; Han, Y.; Fu, H.; Qu, X.; Xu, Z.; Zheng, S. Au@ Pd/TiO₂ with Atomically Dispersed Pd as Highly Active Catalyst for Solvent-free Aerobic Oxidation of Benzyl Alcohol. *Chem. Eng. J.* **2017**, 313, 1–9.
- (8) Alshammari, H.M. Synthesis of Palladium and Copper Nanoparticles Supported on TiO₂ for Oxidation Solvent-Free Aerobic Oxidation of Benzyl Alcohol. *Processes* **2021**, 9, 1590.