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Averages

To compute the local electric field intensity, we start with an incident plane wave at frequency

ω moving from the glass along the z-axis (normal to the metal plane) and polarized along x̂:

~E
(1)

inc(~r, t) = Re{x̂E0e
i(kgz−ωt)}, (1)

where kg = ngω/c and Re{...} denotes the real part of {...}. From this information, plus the

geometry and refraction indices of the glass, metal, and polymer media, the FDTD solver

computes a total field, linearly proportional to E0, described by:

~E
(1)

tot(~r, t) = Re{~E
(1)

tot(~r, ω)e−iωt} . (2)

The structures in the experiments are produced by the time-averaged (over the light period

2π/ω) square of the total field1

〈
∣∣∣~E(1)

tot(~r, t)
∣∣∣2〉 =

1

2

∣∣∣~E(1)

tot(~r, ω)
∣∣∣2 . (3)

To account for an unpolarized incident beam, we have the software do a separate cal-

culation for an incident wave with the same amplitude and frequency but polarized along

ŷ:

~E
(2)

inc(~r, t) = Re{ŷE0e
i(kgz−ωt)}, (4)

If we combine these two incident fields via

~Einc(~r, t) = ~E
(1)

inc(~r, t)cos(φ) + ~E
(2)

inc(~r, t)sin(φ) , (5)

the angle φ describes a linear polarization angle with respect to the x-axis. This ~Einc formally

leads to

~Etot(~r, t) = ~E
(1)

tot(~r, t)cos(φ) + ~E
(2)

tot(~r, t)sin(φ) , (6)
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so the corresponding time and polarization average of
∣∣∣~Etot

∣∣∣2 is

〈〈
∣∣∣~Etot(~r, t)

∣∣∣2〉〉 =
1

4

2∑
α=1

∣∣∣~E(α)

tot (~r, ω)
∣∣∣2 . (7)

Relative permittivities

By working in the time domain to produce an ~Etot(~r, t) the effect of the permittivity formally

enters through a convolution integral for the displacement field

~Dtot(~r, t) =

∫ t

−∞
dt′ε(~r, t− t′)~Etot(~r, t

′) (8)

The FDTD software starts for the metal with permittivity values at discrete frequencies.2 It

then interpolates this data set and, using an inverse Fourier transform, determines ε(t− t′).

In Fig.S1 we plot the interpolated, complex-valued relative permittivity for Cr and Al. There

is a considerable difference between the two metals.

Figure S1: Complex, frequency-dependent relative permittivities of two real metals Al (red)
and Cr (blue). The real part (A) and imaginary (B) are plotted for each metal separately.
The vertical line is at λ0 = 365 nm.
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Waveguide propagation

To develop understanding of and confidence in the numerical calculations, we have examined

several simplified models where analytic results can be obtained. Consider for instance how

light moves within a single hole. Viewing the hole channel as a circular waveguide, we ask

what propagation modes are possible. Switching to cylindrical, polar coordinates (ρ, φ, z)

and assuming the metal is a perfect conductor, an appropriate form of the axial magnetic

field inside the guide (a TE mode) is

Bz ∝ J1(γpρ)sin(φ)eikzz , (9)

where γ2p =
(
ω
c

)2
εp−k2

z , εp = n2
p, and J1 is a Bessel function.1 The angular dependence here

is consistent with the incident light being (electric) polarized along φ = 0. The transverse

components of ~B and ~E are determined by derivatives of Bz, while Ez = 0. The mode’s

propagation wavevector, kz, is determined by the boundary condition around the guide wall,

ρ = r, of1

dJ1(γpρ)

dρ
|ρ=r = 0 (10)

Since the first zero of dJ1(ν)/dν is at ν = 1.841, the TE11 mode dispersion becomes

k2
z =

(ω
c

)2
εp −

(
1.841

r

)2

=

(
2πnp

λ

)2

−
(

1.841

r

)2

. (11)

In order for this mode to propagate, one needs k2
z > 0. The vacuum wavelength at cutoff is

thus set by k2
z = 0 so

λc = 2πrnp/1.841 = 287 nm (12)

for our holes of radius r = 50 nm filled with polymer of np = 1.68. Hence for a vacuum

wavelength of 365 nm, this mode will exponentially decay in z:

eikzz− > e−κzz with κz = 1/43.9 nm. (13)
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Other zeros of dJ1(ν)/dν lead to even smaller wavelength cutoffs and more rapid decay. If

we switch to TH modes the axial field is then electric

Ez ∝ J1(γpρ)cos(φ)eikzz (14)

with Bz = 0 and transverse components of ~E and ~B determined by derivatives of Ez plus the

new boundary condition of J1(γpr) = 0, which first occurs at γpr = 3.832.1 This leads to a

vacuum wavelength at cutoff for the TM11 mode of

λc =
2πrnp

3.832
= 138 nm. (15)

All of these estimates imply that for a metal thickness of 100 nm the time-averaged square

of the associated fields will decay by two (or more) orders of magnitude in moving through

the hole, while the FDTD calculations show a decay by less than a factor of five.

So we next consider the metal to be less than perfect, which allows the fields to penetrate

into the metal. This extension means Eq. 9 and Eq. 14 have to be supplemented with terms

in ρ > r. Since εm has a large negative real part, the γ2m does too, so we replace it with

α2
m = −γ2m and for ρ > r the J1 in Equations 9 and 14 with K1(αmρ), where K1 is a modified

Bessel function. The new boundary conditions across ρ = r cannot be satisfied by a TE

or TM mode alone. One needs to form a linear combination of the two which leads to a

complicated transcendental equation to be solved for kz(ω).3,4 The solution of this equation

is considerably simplified if one uses a Drude model without dissipation for the metal’s

dielectric function

εDm = 1−
(
ω2
p

ω2

)
, (16)

with ωp the plasma frequency.5,6 The key approximation is that the εDm has no imaginary

part, so compared to the physical metal’s dielectric function, εm = n2
m, it is more reasonable

for Al than Cr - see Figure S1. Consequently we focus our discussion on Al. For Al we use
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~ω = 15.6 eV and seek solutions that have a real valued kz. Instead of a single cutoff, there

are passbands that have k2
z > 0.6 The lowest energy passband for r = 50 nm and np = 1.68

lies between vacuum wavelengths of 400 nm to 156 nm. Hence our case of λ0 = 365 nm is

just below the long wavelength cutoff of this passband. We checked that modest changes

in the system’s parameters can push one past the cutoff. For instance using r = 40 nm or

replacing np → ng = 1.47 leads to k2
z < 0 when λ0 = 365 nm.

To check how much the retention of the imaginary part in εm matters, we also solved

the full transcendental equation for kz when λ0 = 365 nm. We write the answer as kz =

2π/p + i/δ, where p is a period and δ a decay length. Table 1 summarizes the results. The

Table 1

p
(
nm
)

δ
(
nm
)

Al
(
εDm
)

494 –

Al
(
εm
)

473 511

Cr
(
εm
)

356 134

effect of dissipation in Al is modest: the period is hardly changed and the decay length is

much greater than our metal thickness.7 We have also included the result for Cr, which has

a smaller δ, as expected.

Once kz is known all field components can be analytically calculated, to within a common

scale factor. Comparing these profiles at fixed z with the corresponding ones produced by

FDTD at z midway through the hole channel, we found reasonable agreement. For both

Al and Cr the relative strength of |Bz| is greater (in cgs units) than that of |Ez|, which

means the mode may be labeled as HE11. At the high energy (short wavelength) limit of

the lowest passband, kz → ∞, and the cutoff frequency is set by εDm(ω) + εp = 0.6,8 This

result is satisfied by the electrostatic surface plasmon frequency for a flat surface between

the metal and polymer. The mode has a purely TM symmetry so its waveguide label has

become EH11.

The weak decay of the HE11 mode moving through a hole in a real (as opposed to
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a perfectly conducting) metal suggests that Fabry Pérot effects should occur when back

scattering from the exit and entrance regions is included.9,10 The evidence for standing waves

is not clear for our metal thickness of h = 100 nm because of end effects where fields are

enhanced around the hole’s rim. However when h is increased into the range 400− 600 nm,

the spatial decay of 〈〈
∣∣∣~Etot(~r, t)

∣∣∣2〉〉, Eq. 7 , away from the ends shows nonmonotonic decay

with local peaks separated by ≈ 250 nm in Al, consistent with the results in Table 1.

Isosurface intensity values

Rather than repeatedly creating several intensity isosurfaces and looking for the best match

with the measured replicas in Figures 4-6, it is enough to do this matching process for just

one case. The equation defining the threshold isointensity surface, I(~r), for a so-called case

1 is

Φth = τ1I1(~r1) (17)

where the specific ~r1 can be taken as the location of the highest point on the intensity

isosurface that best matches with the the highest point on the replica for case 1. Next

consider a case 2 with the same pulse duration. The analog of Eq.17 is

Φth = τ1I2(~r2) (18)

where ~r2 is at the highest point on the case 2 intensity isosurface. Comparing these two

equations we deduce that

I2(~r2) = I1(~r1) (19)

which means that the intensity on the case 2, threshold intensity isosurface is identical to

that on the case 1 isosurface. For Figures 4,5,6 the pulse duration is the same in every case,

so the threshold isosurface intensity values must all be the same, independent of the number

or arrangement of apertures.
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However for Figure 3 the pulse duration was doubled for a case 3 with τ3 = 2τ1 , which

implies that

I3(~r3) = I1(~r1)/2 (20)

This reduction of intensity on the case 3, threshold intensity isosurface was confirmed by

visual matching in Figure 3.
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