Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2023

## **Support information**

## Te-induced fabrications of Pt<sub>3</sub>PdTe<sub>0.2</sub> alloy nanocages by self-diffusion of Pd atoms with unique MOR electrocatalytic performance

Yuhe Shi,<sup>†,a</sup> Ling Zhang,<sup>†,\*,a</sup> Huiwen Zhou,<sup>a</sup> Ruanshan Liu,<sup>a</sup> Shichen Nie,<sup>b</sup>

Guojie Ye,<sup>c</sup> Fengxia Wu,<sup>d,e</sup> Wenxin Niu,<sup>\*,d,e</sup> Jing Long Han,<sup>\*,f,g</sup> and Ai Jie

## Wang<sup>f,g</sup>



Fig. S1 SEM (a), TEM (b), and HRTEM (c and d) images of Pd nanocube templates.



Fig. S2 SEM image of Pt<sub>3</sub>PdTe<sub>0.2</sub> nanocages.

| A a meduata                          | Pt Pd              |     | Te   |  |  |  |
|--------------------------------------|--------------------|-----|------|--|--|--|
| As-products                          | mg·L <sup>-1</sup> |     |      |  |  |  |
| Pt <sub>3</sub> PdTe <sub>0.2</sub>  | 16.9               | 3.0 | 0.84 |  |  |  |
| Pt <sub>3</sub> PdTe <sub>0.35</sub> | 14.8               | 2.7 | 1.1  |  |  |  |
| Pt <sub>3</sub> PdTe <sub>0.4</sub>  | 15.2               | 2.5 | 1.2  |  |  |  |
| Pd@Pt                                | 4.3                | 2.8 | _    |  |  |  |
| PtPd <sub>1.5</sub>                  | 10.7               | 7.9 | _    |  |  |  |

**Table S1** Components (mg·L<sup>-1</sup>) of Pt, Pd, and Te elements of  $Pt_3PdTe_x$  as-products insynthetic solutions calculated from ICP-OES data.



Fig. S3 SEM image (a), TEM image (b), size distribution (c), HRTEM images (d and e), and EDS elemental mappings (f) of Pt<sub>3</sub>PdTe<sub>0.35</sub> nanocages. Inset of (e), corresponding FFT pattern.



Fig. S4 SEM image (a), TEM image (b), size distribution (c), HRTEM images (d and e), and EDS elemental mappings (f) of Pt<sub>3</sub>PdTe<sub>0.4</sub> nanocages. Inset of (e), corresponding FFT pattern.



Fig. S5 SEM image (a), TEM image (b), size distribution (c), HRTEM image (d),STEM and EDS elemental mapping images (e) of Pd@Pt core-shell nanoparticles.Inset of (d), HRTEM of the labeled zone in (d). (f) Elemental linear-scan profile across the white arrow of the individual Pd@Pt core-shell nanoparticle (inset).



Fig. S6 TEM image (a), size distribution (b), HRTEM images (c and d), STEM and EDS elemental mapping images (e) of PtPd<sub>1.5</sub> alloy nanoparticles. Inset of (d), corresponding FFT pattern.



Fig. S7 CVs of  $Pt_3PdTe_{0.2}$  (a),  $Pt_3PdTe_{0.35}$  (b),  $Pt_3PdTe_{0.4}$  (c),  $PtPd_{1.5}$  (d), Pd@Pt (e), and Pt/C (f) catalysts modified GCE at 1<sup>st</sup>, 2<sup>rd</sup>, 49<sup>th</sup>, and 50<sup>th</sup> cycles in 0.5 M H<sub>2</sub>SO<sub>4</sub>. Scanning rates, 50 mV·s<sup>-1</sup>.

**Table S2** Weight percentages (%) of Pt, Pd, and Te elements of  $Pt_3PdTe_x$  as-products before and after the electrochemical activations and MOR durability tests in  $H_2SO_4$  by

| TEM-EDS methods.                     |                    |       |                   |       |       |                  |       |      |      |
|--------------------------------------|--------------------|-------|-------------------|-------|-------|------------------|-------|------|------|
| as-products                          | Before activations |       | After activations |       |       | After durability |       |      |      |
|                                      | Pt                 | Pd    | Te                | Pt    | Pd    | Te               | Pt    | Pd   | Te   |
| Pt <sub>3</sub> PdTe <sub>0.2</sub>  | 92.17              | 4.79  | 3.04              | 90.45 | 8.78  | 0.78             | 90.44 | 8.78 | 0.79 |
| Pt <sub>3</sub> PdTe <sub>0.35</sub> | 88.37              | 7.14  | 4.54              | 89.26 | 9.6   | 1.18             | _     | _    | _    |
| Pt <sub>3</sub> PdTe <sub>0.4</sub>  | 70.65              | 12.23 | 17.12             | 77.12 | 17.27 | 5.63             | _     | _    | _    |

|                                      | 0 1/                             |                   | 50                  |                   |       |
|--------------------------------------|----------------------------------|-------------------|---------------------|-------------------|-------|
| catalysts                            | Ĵь                               |                   | $\dot{J}_{ m f}$    | I. /I.            |       |
|                                      | mA <sup>·</sup> cm <sup>-2</sup> | $A \cdot mg^{-1}$ | mA·cm <sup>-2</sup> | $A \cdot mg^{-1}$ | 16/11 |
| Pt <sub>3</sub> PdTe <sub>0.2</sub>  | 2.71                             | 2.14              | 1.96                | 1.42              | 1.4   |
| Pt <sub>3</sub> PdTe <sub>0.35</sub> | 2.36                             | 1.85              | 1.57                | 1.13              | 1.5   |
| Pt <sub>3</sub> PdTe <sub>0.4</sub>  | 1.65                             | 0.98              | 1.25                | 0.71              | 1.3   |
| Pd@Pt                                | 1.11                             | 0.91              | 0.92                | 0.74              | 1.2   |
| PtPd <sub>1.5</sub>                  | 0.58                             | 0.16              | 0.54                | 0.15              | 1.1   |
| Pt/C                                 | 0.24                             | 0.18              | 0.25                | 0.20              | 0.95  |

Table S3. Maximum specific activities and mass activities of in the backward  $(j_b)$  and

forward scan ( $j_{\rm f}$ ) and the ratio of  $j_{\rm b}$  to  $j_{\rm f}$  ( $I_{\rm b}/I_{\rm f}$ ).

| Catalysts                           | Electrolyte                                                        | Mass activity<br>(A·mg <sup>-1</sup> <sub>Pt+Pd</sub> ) | Specific activity<br>(mA·cm <sup>-2</sup> ) | Ref.         |
|-------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|--------------|
| Pt <sub>3</sub> PdTe <sub>0.2</sub> | 0.1 M HClO <sub>4</sub> ,<br>1 M CH <sub>3</sub> OH                | 2.14                                                    | 2.71                                        | This<br>work |
| PdPtRuTe<br>nanotubes               | 0.5 M H <sub>2</sub> SO <sub>4</sub> ,<br>1.0 M CH <sub>3</sub> OH | 1.262                                                   | 2.96                                        | 1            |
| PtPdTe<br>nanowires                 | 1 M CH3OH,<br>0.5 M H2SO4                                          | _                                                       | 1.49                                        | 2            |
| PtTe<br>nanotubes                   | 0.5 M H2SO4,<br>0.5 M CH3OH                                        | 0.632                                                   | 1.149                                       | 3            |
| TePbPt<br>nanotube                  | 0.5 M H2SO4,<br>1 M CH3OH                                          | 0.53                                                    | _                                           | 4            |
| PtIrTe<br>nanotubes                 | 0.5 M H2SO4,<br>1.0 M CH3OH                                        | 0.495                                                   | _                                           | 5            |
| PdRuPt<br>nanowires                 | 0.1 M HClO4,<br>0.5 M CH3OH                                        | 1.10                                                    | 1.98                                        | 6            |
| PtRu<br>nanowires                   | 0.1 M HClO <sub>4</sub> ,<br>0.5 M CH <sub>3</sub> OH              | 0.82                                                    | 1.16                                        | 7            |
| hollow Pt-on-Pd<br>nanodendrites    | 0.5 M H2SO4,<br>1.0 M CH3OH                                        | 0.58                                                    | 1.36                                        | 8            |
| PtPdCu                              | 0.5 M H2SO4,<br>0.5 M CH3OH                                        | 0.52                                                    | 0.693                                       | 9            |

 Table S4. Summary of reported catalytic performance of various Pt-based MOR catalysts in acidic electrolytes.



Fig. S8 CO stripping curves for  $1^{st}$  and  $2^{nd}$  cycles of different catalysts in 0.5 M H<sub>2</sub>SO<sub>4</sub>. Scanning rates, 50 mV s<sup>-1</sup>.



Fig. S9 Durability tests of electrocatalysts towards electrooxidations of 1 M methanol in 0.1 M HClO<sub>4</sub> according to chronoamperometry curves at 0.76 V for 3600 s (a) and peaked mass activities in the backward scans in continuous CVs at 50 mV·s<sup>-1</sup> (b).



Fig. S10 Configurations of Pt and the intermediates.



Fig. S11 Configurations of  $Pt_3Pd$  and the intermediates.



Fig. S12 Configurations of Pt<sub>3</sub>PdTe<sub>0.2</sub> and the intermediates.

## References

- 1. S. Y. Ma, H. H. Li, B. C. Hu, X. Cheng, Q. Q. Fu and S. H. Yu, *J. Am. Chem. Soc.*, 2017, **139**, 5890-5895.
- 2. H.-H. Li, S. Zhao, M. Gong, C.-H. Cui, D. He, H.-W. Liang, L. Wu and S.-H. Yu, *Angew. Chem. Int. Ed.*, 2013, **52**, 7472-7476.
- 3. Z. Wang, H. Zhang, S. Yin, S. Liu, Z. Dai, Y. Xu, X. Li, L. Wang and H. Wang, Sustain. Energy Fuels, 2020, 4, 2950-2955.
- 4. L. Yang, G. Li, J. Ge, C. Liu, Z. Jin, G. Wang and W. Xing, *J. Mater. Chem. A*, 2018, **6**, 16798-16803.
- 5. Y. Hao, Y. Yang, L. Hong, J. Yuan, L. Niu and Y. Gui, *ACS Appl. Mater. Interfaces*, 2014, **6**, 21986-21994.
- 6. C. Shang, Y. Guo and E. Wang, *Nano Res.*, 2018, **11**, 4348-4355.
- 7. L. Huang, X. Zhang, Q. Wang, Y. Han, Y. Fang and S. Dong, *J. Am. Chem. Soc.*, 2018, **140**, 1142-1147.
- 8. L. Wang and Y. Yamauchi, J. Am. Chem. Soc., 2013, 135, 16762-16765.
- 9. P. Wang, Y. Zhang, R. Shi and Z. Wang, ACS Appl. Energy Mater., 2019, 2, 2515-2523.