Supporting Information

Impact of fluorination on the energy level alignment of $F_nZnPc/MAPbI_3$ interface

Elham Oleiki,^a Saqib Javaid,^{a,b} Geunsik Lee^{*a}

^a Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.

^b MMSG, Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad, Pakistan

Email: gslee@unist.ac.kr

Table S1. Adsorption energies (eV) of F_n ZnPc for different adsorption sites with reference to the position of Zn atom on MAPbl₃ surface.

	l top	bridge	Pb top
F₄ZnPC	-2.50	-2.36	-2.37
F ₈ ZnPC	-2.40	-2.39	-1.98
F ₁₂ ZnPc	-2.62	-2.59	-1.94
F ₁₆ ZnPc	-2.46	-2.44	-1.81

Table S2. Substrate and molecular distortion energies for ZnPc/MAPbI₃ and F₁₆ZnPc/MAPbI₃.

	ZnPc/MAPbl₃	F ₁₆ ZnPc/MAPbI ₃
Molecular distortion energy (eV)	0.18	0.29
Substrate distortion energy (eV)	0.02	0.17
Total distortion energy (eV)	0.20	0.46

We define the distortion energy as following:

(Eq. S1): E_{distortion} (molecule/MAPbI₃) = [E_{distorted} (MAPbI₃) - E_{ideal} (MAPbI₃)]

+ [E_{distorted} (molecule) - E_{ideal} (molecule)]

Here, $E_{distorted}$ (MAPbI₃) is the total energy of substrate distorted by molecule adsorption, E_{ideal} (MAPbI₃) is total energy of bare MAPbI₃ surface optimized, $E_{distorted}$ (molecule) is the total energy of molecule distorted after adsorption on the substrate and E_{ideal} (molecule) is the total energy of a single molecule in gas phase.

Table S3. Calculated quadrupole moments by PBE method for molecular structures shown in Fig. S3. Q_{xx} and Q_{yy} are in-plane components and Q_{zz} is the component perpendicular to the molecular plane. Values for two F₄ZnPc isomers in Fig. S3 are almost the same, thus the mean values are presented. The molecular models considered in Fig. S1 are denoted by F_n*ZnPc (n = 4,8,12).

	ZnPc	F ₄ *ZnPc	F ₄ ZnPc	F ₈ *ZnPc	F ₈ ZnPc	F ₁₂ *ZnPc	F ₁₂ ZnPc	F ₁₆ ZnPC
Q _{xx} (a.u.)	12.80	9.87	2.10	-0.70	-7.97	-2.81	-2.61	-12.92
Q _{yy} (a.u.)	12.80	9.88	2.09	-0.69	-7.96	-2.81	-3.02	-12.92
Q _{zz} (a.u.)	-25.60	-19.96	-4.19	1.40	15.93	5.62	5.63	25.84

Fig. S1 Optimum molecular structures of F_nZnPc considered in this study. Atomic color scheme: N (light blue), C (brown), H (pink), Zn (grey) and F (green).

5.36 Å

Fig. S2 Top view of relative molecular positions in square lattice of ZnPc and F₁₆ZnPc. Atomic color scheme: N (light blue), C (brown), H (pink), Zn (grey) and F (green).

Fig. S3 Optimum molecular structures of F_n ZnPc considered for calculation of quadrupole moments whose results are listed in Table. S3, and molecular ionization energy presented in Fig. S4. Atomic color scheme: N (light blue), C (brown), H (white), Zn (grey), and F (green).

Fig. S4 Molecular ionization energy for different F_n ZnPc isomers. The ionization energy of an isolated gas phase molecule is shown in black color. Red color shows the effect of intermolecular interaction on ionization energy (gas phase molecules are arranged in a square lattice in which intermolecular distance is ~ 5 Å). Values in parenthesis are molecular quadrupole moments in a.u.

Fig. S5 (a) F₄ZnPc, (b) F₈ZnPc and (c) F₁₂ZnPc HOMO energy levels relative to the vacuum level for equilibrium structures of an isolated gas phase molecule (left most), and an adsorbed molecule (rightest). The effect of intermolecular interaction and molecular distortion on HOMO is shown in the middle left and middle right, respectively. In the middle left, the gas molecules are arranged into a square lattice, and in the middle right, the non-planar distortion by the interaction with substrate is additionally included.

Fig. S6 Band structures of F_{16} ZnPc and ZnPc with the crystallographic data from Ref. [1] and [2] for ZnPc and F_{16} ZnPc, respectively.

References

- 1 H. Jiang, P. Hu, J. Ye, R. Ganguly, Y. Li, Y. Long, D. Fichou, W. Hu and C. Kloc, *Angew. Chemie Int. Ed.*, 2018, **57**, 10112–10117.
- H. Jiang, J. Ye, P. Hu, F. Wei, K. Du, N. Wang, T. Ba, S. Feng and C. Kloc, *Sci. Rep.*, 2015, 4, 7573.