
1 

 

Supplementary Information 

 

 

Machine learning-augmented surface-enhanced spectroscopy toward 

next-generation molecular diagnostics 

Hong Zhou1,2,ǀǀ, Liangge Xu1,2,3,ǀǀ,Zhihao Ren1,2,Jiaqi Zhu3*, Chengkuo Lee1,2,4* 

1 Department of Electrical and Computer Engineering, National University of Singapore, 

Singapore 117583; 

2 Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 

117608; 

3 National Key Laboratory of Special Environment Composite Technology, Harbin Institute of 

Technology, Harbin, 150001, China 

4 NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China; 

|| These authors contributed equally to this work. 

* Corresponding Author: Chengkuo Lee (email: elelc@nus.edu.sg); Jiaqi Zhu (email: 

zhujq@hit.edu.cn);  

 

  

Electronic Supplementary Material (ESI) for Nanoscale Advances.
This journal is © The Royal Society of Chemistry 2022

mailto:elelc@nus.edu.sg
mailto:zhujq@hit.edu.cn


2 

Note S1. Principles of SERS and SEIRA 

The principles of SERS and SEIRA include electromagnetic field enhancement and 

chemical effect. The underlying mechanisms of electromagnetic field enhancement are mainly 

about the interaction of molecules and plasmons excited in a SERS/SEIRA substrate. The 

performance metric that describes this enhancement effect is the enhancement factor GSERS and 

GSEIRA. Figure 2a in the main text shows the conventional Raman scattering Sωr with incident 

radiation Rω0. Raman spectrum provides rich information about chemical structure and identity, 

phase and polymorphism, intrinsic stress/strain, and contamination and impurity, but the intensity 

of Raman scattering is weak when detecting trace amounts of molecules, limiting its application 

in many scenarios. The SERS enhancement factor is calculated by 
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where ISERS(ωR) and ICR(ωR) are the total Raman intensity of SERS and conventional Raman, 

respectively. ISERS(ωR) is determined by the induced dipole pm(ωR, rm) at the Raman scattering 

frequency (ωR) and the induced dipole of the plasmonic antennas pA(ωR, rA). pm(ωR, rm) depends 

on the electric field strength for the excitation of the target molecules and Raman polarizability 

derivatives, that is,1-3 

0 0( , ) ( , ) ( , )I
m R m m R m   p r α EL r                                           (2) 
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where EL(ω0, rm) and ER(ω0) are the local and incident electric field strength at the position rm in 

which plasmonic antennas are present and absent to enhance molecular signals. The g1(ω0, rm) 

represents the enhancement factor of incident electric field strength. The α
I 

m(ωR, ω0) is the Raman 

polarizability derivative when the incident light frequency is ω0 and the Raman scattering 

frequency is ωR. To obtain high electric field strength for molecule detection, either increasing the 

incident light intensity ER(ω0) or local electric field intensity EL(ω0, rm) is possible. However, 

high-power incident laser light can cause surface damage to the analyte, limiting its sensitivity to 

a certain threshold. The strategy of increasing g1(ω0, rm) by plasmonic antennas could significantly 

increase the local interaction power between photons and molecules near the antenna with less 

laser power, which is also the key advantage of SERS. For the antenna at rA, it is also locally 

excited by the nearby point dipolar source pm(ωR, rm), and then its local electric field intensity at 

rA is expressed as 
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2( , ) ( , )R A m R mC  EL r p r                                             (4) 

where C2 is determined by the relative position of plasmonic antennas and molecules. Then in the 

induced dipole approximation, the induced dipole of the antennas pA(ωR, rA) is calculated by 

2( , ) ( ) ( , ) ( ) ( , )A R A A R R A A R m R mC      p r α EL r α p r                           (5) 

Then, the additive local source p(ωR) that excites signals at far-field could be expressed by 

( ) ( , ) ( , )R m R m A R A   p p r p r                                          (6) 

By substituting Equation 5 to Equation 6, p(ωR) can be written as 

2 2( ) ( , )(1 ( )) ( , ) ( , )R m R m A R m R m R AC g        p p r p r r                         (7) 

Then, by substituting Equations 2 and 3 to Equation 7, we can obtain 

1
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The total Raman intensity ISERS(ωR) is proportional 
2

( )Rp , that is, 

22 1
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For the conventional Raman case, the total Raman intensity can be expressed as 

2
1
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By substituting Equations 9 and 10 to Equation 1, we can obtain the SERS enhancement factor as 
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As observed in Equation 11, the SERS enhancement involves two steps. First, the local field is 

enhanced by the localized surface plasmon polariton (LSP) of nanoparticles, that is, Local field 

enhancement of incident light (|g1(ω0, rm)|2). Then, the excitation and radiation efficiency of far-

field Raman scattering is improved by the interaction with LSP (|g2(ωR, rA)|2). 

Similarly, the local field around molecules for conventional IR spectrum can be expressed as 

2
( ) ( )IR k kI     A                                                 (12) 

where μ(ωk) represents the electric dipole derivative concerning the kth vibrational normal 

modes at the IR absorption frequency (ωk). The total IR intensity IIR(ωk) is obtained by 

2 2
1( ) ( ) ( , ) ( ) ( )SEIRA k k k m k kI g         EA r A                        (13) 

Therefore, the SEIRA enhancement factor is calculated as 
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Note S2. Machine learning algorithms 

2.1 Genetic algorithm (GA) 

GA is an adaptive search procedure based on natural genetics and natural selection mechanism, 

which has been widely used for solving both constrained and unconstrained optimization 

problems.4, 5 GA first generates a random population, where each individual in the population 

represents a possible solution and is coded as a “0” or “1”, also known as a “chromosome”. “1” 

represents the selected variable and “0” is the unselected variable. Then, the “fitness” of each 

individual is calculated for evaluation. After evaluation, the next population is obtained by genetic 

manipulation. After many iterations, the individuals in the population gradually solve the target 

level. The main advantage of GA is that it can find high-quality solutions in a very short 

computational time. Therefore, GA is often used for antenna design in SEIRA.6 

 

2.2 Principal component analysis (PCA) 

PCA is one of the most commonly used algorithms for SEIRA/SERS due to its function of 

dimension reduction. The main idea of PCA is to reduce the dimensionality of a dataset consisting 

of many interrelated variables, while maximizing the preservation of features in the dataset.7-9 It 

can effectively reduce the pressure on signal processing caused by large amounts of data, thereby 

improving computational efficiency.10 Generally, PCA is used as a preprocessing step for 

classification algorithms such as LDA and SVM. PCA is an unsupervised method that allows data 

to be inspected without pre-existing bias. The advantages of PCA include ease of computation, 

speeding up other ML algorithms, and offsetting problems with high-dimensional spectral data.11 

In the practical application of SEIRA/SERS, it is necessary to consider the impact of the low 

interpretability of principal components and the trade-off between information loss and 

dimensionality reduction. 

 

2.3 Support vector machine (SVM) 

SVM is a kind of supervised ML algorithm that is often used for the classification and 

regression analysis of two groups of data points.12 It looks for a hyperplane separating the two 
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classes of data points with the largest margin.13 SVMs can be linear and nonlinear according to the 

hyperplane shape.14 SVM works by mapping training data to points in space, then maximizing the 

gap width between two categories, and finally predicting which category the new dataset falls on 

based on the gap side the new dataset falls on. The advantage of SVM is that it is efficient when 

the space is high-dimensional or the number of dimensions is greater than the number of data. 

Notably, when the number of features is much larger than the number of datasets, it is necessary 

to prevent overfitting when choosing the kernel function, and the regularization term is crucial. 

SVM is extensively used in SEIRA/SERS, such as in the detection and classification of small 

molecules, biomarkers, tumour cells, pathogens, and so on.15-18 

 

2.4 Linear discriminant analysis (LDA)  

LDA is a supervised ML algorithm that for solving more than two-class classification 

problems by transferring features from higher to lower dimension spaces.19 The function of 

dimensionality reduction allows it to be used as a preprocessing step for some classification 

applications.20 LDA is not only a dimensionality reduction tool, but also a robust classification 

method. Compared to SVM, LDA generally produces robust, decent, and interpretable 

classification results. Therefore, it is also used as a benchmarking method before the 

implementation of other complex methods. In SERS, LDA could be used to separate SERS spectra 

of multiple analytes with high precision. Furthermore, it can determine the intervals in the 

spectrum with the greatest contribution of spectral features, thereby assessing their contribution to 

the spectrum of each analyte.21  

 

2.5 κ-nearest neighbor (κNN). 

κNN is a non-parametric supervised ML algorithm that uses proximity to classify or predict 

groupings of individual data points.22 The algorithm is nonparametric, which means it makes no 

assumptions about the underlying data. The core idea of the κNN algorithm is to assume that 

similar things are very close. The choice of neighbor number (κ) is based on the data set. When 

the dataset is small, the classification of the dataset by κNN is simple and accurate. However, as 

the dataset grows, κNN becomes increasingly inefficient, affecting the overall model performance. 

Recently, κNN was used for SERS-based breast cancer detection to improve classification 

accuracy.23-25 
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2.6 Random forest (RF) 

RF is a supervised ML algorithm consisting of decision tree algorithms for solving regression 

and classification problems.26 The ensemble of decision trees builds the “forest” of the RF 

algorithm. “Forests” are trained by bagging or bootstrap aggregating, where bagging is an 

ensemble meta-algorithm that improves the accuracy of ML algorithms. Since the prediction 

results depend on the average of the outputs of various trees, the accuracy of the results can be 

improved by increasing the number of trees. The advantages of the RF algorithm include: a) more 

accurate than decision tree algorithms; b) providing an efficient way to deal with missing data; c) 

producing reasonable predictions without hyper-parameter tuning; d) being free from overfitting. 

Recently, RF was used to identify significant SERS signals, evaluate the correlation of predefined 

spectral groups, and further analyze the relationship of different SERS signals.27-29 Therefore, RF 

is promising for the sophisticated analysis of complex biological samples. 

 

2.7 Artificial neural networks (ANN) 

Neural networks, whose name and structure are inspired by the human brain, process data by 

mimicking the way biological neurons transmit signals to each other.30, 31 ANNs are supervised 

learning algorithms that can be classified into single-layer, multi-layer, and recurrent networks.32 

ANN usually consists of an input layer, one or more hidden layers, and an output layer. Each node 

is connected to another node through weights and thresholds. When data enters a node, the output 

of the node is compared with a set threshold. If the output is above the threshold, the node will be 

activated and send the data to the next layer of the network. If the output is below the threshold, 

the data is not passed to the next layer of the network. The advantages of the ANN algorithm 

include: a) storing information on the entire network; b) ability to work with incomplete 

knowledge; c) high fault tolerance, that is, damage to one or more cells does not prevent it from 

generating output; d) parallel processing capability to perform more than one job at the same time. 

Recently, ANN was utilized to identify significant SEIRA signals and discriminate accurately 

proteins, nucleic acids, carbohydrates, and lipids.33-35 

 

2.8 Convolutional neural network (CNN) 

CNN is a supervised deep learning algorithm that is good at processing data with grid patterns, 
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so it is widely used in the field of image computer vision.36 CNN has three main types of layers, 

which are convolutional layer, pooling layer, and fully-connected layer. It uses the principles of 

linear algebra, especially matrix multiplication, to identify patterns in images.37 The advantages of 

the CNN algorithm include: a) high accuracy in image recognition problems; b) automatically 

detecting the important features without any human supervision; c) weight sharing. Although the 

output of SERS/SEIRA is a two-dimensional spectrum, its output can form an image when its 

application is related to time, groups of concentrations, or multiple analytes. Therefore, CNN can 

be used to assist SERS and SEIRA in efficiently detecting and identifying analytes. Recently, some 

work reported that the SERS control spectra of normal and cancer cell metabolites were classified 

by the ANN algorithm, and the prediction accuracy reached 100%.38-40 

 

Note S3. Overview of the mathematics behind machine learning algorithms 

The application of ML algorithms in SEIRA/SERS mainly includes regression, clustering, 

dimensionality reduction, and classification. Here we briefly introduce the mathematical formula 

derivation of four typical algorithms. 

3.1 Linear Regression 

In linear regression, the output h(x) is linearly dependent on input x, hence we can create a 

hypothesis that can be resembled the equation of a straight line, that is, 

0 1( )h x x                                                                   (15) 

where (θ0) and (θ1) are called regression coefficients. To predict values more precisely, the value 

of θ0 and θ1 are important. That is, we need to obtain the optimal value of θ0 and θ1 from the 

training set to minimize the difference between the measured result y and predicted result h(x). It 

can be expressed as 
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 , where m is the number of records present in our dataset. 

Therefore, we need to reduce the squared error fn of the hypothetical model, which is also called 

cost function C(θ0, θ1), 
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One of the techniques that help to find optimal θ0 and θ1 is gradient descent. The process is: 1) 

pick random values of θ0 and θ1; 2) keep on simultaneously updating values of θ0 and θ1 till the 

convergence; 3) if the cost function does not decrease anymore, we reached our local minima. It 

can be expressed using the formula below, 

0 0 1
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0 0temp                                                                 (19) 

1 1temp                                                                 (20) 

where α is the learning rate. By using the training set to train the above model, the optimal value 

of θ0 and θ1 can be obtained. The above linear regression can be extended to multiple linear 

regression (MLR) by adding multiple independent features x. The hypothesis will change to  

0 1 1 2 2( ) ... n nh x x x x                                                    (21) 

And the cost function will be modified to 
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The gradient descent simultaneous update will change to 

0 1( , ,... )j j n

j

C     
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where j=0,1,2…n. The demonstration in Figure 5b-v used MLR as the algorithm for dynamic 

biomonitoring. 

 

3.2 Dimensionality reduction 

Principal component analysis (PCA) is the typical technique for dimensionality reduction. 

The measured dataset is set as Z. The first step of PCA is the standardization of the continuous 

variables of the dataset as 

Z 




X                                                           (24) 
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The second step is to construct the covariance matrix by doing a simple matrix operation on the 

input matrix X, as shown in the following formula, 

1

1
( , ) ( )( )

1

N

i X i Y

i

cov X Y
N

 


   

A X Y                             (27) 

where Xi and Yi are the specific training dataset from variables X and Y, and μx and μy are the means 
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of the variables. The next step is to compute eigenvectors and corresponding eigenvalues. In 

general, the eigenvector of a matrix A is the vector for which the following holds: 

v vA                                                            (28) 

where λ is the eigenvalue and v  is the eigenvector. We set λ1> λ2> λ3>····, Then, the 1st PC v1 is 

the eigenvector of the sample covariance matrix A associated with the largest eigenvalue. The 2nd 

PC v2 is the eigenvector of the sample covariance matrix A associated with the second largest 

eigenvalue. 

In the last step, the samples are transformed to the new subspace by reorienting the dataset 

from the original axis to the axis now represented by the principal components. It can be expressed 

as  

D=[v1,v2…]·X                                                     (29) 

In conclusion, steps involved in PCA are 

 Standardization of the continuous variables of the dataset. 

 Computing the Co-variance Matrix to identify Co-relations. 

 Computing the Eigen Values and Eigenvectors of the covariance Matrix to identify the 

Principal Components. 

 Deciding on the Principal Components to be kept for further analysis based on the 

variation in the Components using the Scree Plot. 

 Recast the data along the Principal Component’s axes. 

 

3.3 Classification 

Support vector machine (SVM) is a typical classification algorithm that classifies input data 

into two classes by calculating the distance between data groups and maximizing the gap between 

them. The measured dataset is set as X1 and X2, as shown in Figure 3a of the main text. Then a 

hyperplane in SVM is developed to separate the two classes. The main task of the SVM model is 

to find the best hyperplane to classify the classes. The hyperplane can be expressed by the 

following equation. 

0b  ω x                                                            (30) 

where ω is a weights that determines the orientation of the hyperplane and b is the bias. The 

distance between hyperplane and origin is the value of the bias divided by the length of the normal 

vector, which can be expressed as 
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                                                  (31) 

The distance of any point 𝑥 in X1 or X2 to the hyperplane is calculated as 

T b
d

 

ω x

ω
                                                       (32) 

The training task is to maximize the distance. When making predictions on training data classified 

as positive and negative groups, a value greater than 0 will be obtained if points are replaced from 

the positive group in the hyperplane equation. It can be expressed as 

0b  ω x                                                        (33) 

Predictions from the negative group in the hyperplane equation would give negative value as 

0b  ω x                                                        (34) 

 

3.4 Clustering 

K-means clustering is the most common clustering algorithms. The K-means algorithm 

mainly performs two tasks: 1) determine the best value for K center points, and 2) minimize 

pairwise distances of data points within the same cluster. For the measured dataset X = [x1, x2,…xn], 

these points can be divided into k clusters C1,…Ck according to the objective below 

1

2

,...
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1
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k
r

k
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r i j Cr

x x
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                                             (35) 

This cost function is a weighted average of the cluster variances. Its weight is proportional to the 

cluster size, expressed in points rC . To derive it, we set 
1

r

n

r ii C
r

x
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Besides, 
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Therefore, according to Equations (36)-(37), we obtain 



11 

2 2

,

1

2
r r

i j r i r

i j C i C

x x C x 
 

                                           (38) 

Equations (35) can be derived as 

1

1

2

2,...
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k

j
k

k
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                                                 (39) 

Then, the following steps are used to find the solution to the k-means objective (39). 

 Choose k initial cluster centers µ1,…,µk. 

 Assign each point xi to its correct cluster Cj according to j = argmin
2

2i jx  . 

 Update the centers µj based on the new clusters. 

 Repeat above two steps until convergence to some stopping criterion. 
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Table S1 Summary of machine learning-enhanced SEIRA and SERS application 

Types Ref. Substrates 
Algorith

ms 
Analytes Function 

Performance 

metrics 

SEIR

A 

John-

Herpin et 

al.33 

Nanorod 

antennas 
DNN 

Proteins, 

nucleic acids, 

carbohydrates

, lipids 

Analyte 

discrimination 

and data-

processing 

4 classes of 

biomolecules 

Ren et al.41 

Wavelength

-

multiplexed 

hook 

nanoantenn

as 

PCA, 

SVM 

methanol, 

ethanol, 

isopropanol 

Analyte 

discrimination 

and classification 

100% identification 

accuracy 

Kühner et 

al.42 

Nanorod 

antennas 
PCA 

Glucose, 

Fructose 

Analyte 

discrimination 

10 g/L detection 

limit 

Meng et 

al.43 

Band-stop 

and band-

pass 

antennas 

Frame 

averaging, 

PCA, 

SVM 

C2H2, C2H4, 

C2H6, NH3, 

O3, SO2) 

Chemical 

Classifier 

6 classes of 

chemicals 

Li et al.6 

Digitized 

binary 

antennas 

GA COVID-19 Design assisting 
1.66%/nm 

sensitivity 

Nadell et 

al.44 

Cylindrical 

antennas 
DNN / Design assisting 

1.16 × 10−3 average 

mean squared error 

Jafar-

Zanjani et 

al.45 

Digitized 

binary 

antennas 

Adaptive 

GA 
/ Design assisting ±45° field-of-view 

Phan et 

al.46 

Graphene 

antennas 
DNN / Inverse Design 2 hidden layers 

Kalinin et 

al.47 

Self-

assembled 

antenna 

arrays 

DNN / Design assisting 4 hidden layers 

Corcione et 

al.48 

Nanorod 

antennas 

ANN, 

Gaussian 

process 

regression 

Glucose Data-processing 0.47 g/L RMS error 

Meng et 

al.49 

Band-stop 

and band-

pass 

antennas 

PCA, 

SVM 

paracetamol, 

ibuprofen, 

aspirin, oil 

Analyte 

discrimination 

6 classes of 

chemicals 

Kyoung et 

al.50 

Nanoslot 

antennas 
k-NN 

Protein A/G 

and IgG 

Extracting 

complex 

refractive index 

 

SERS 

William 

Cheung et 

al.51 

Gold 

Colloid 

Solution 

PCA, 

PLSR, 

ANNs, 

SVR 

Sudan-1 
Quantitative 

Analysis 
10−3 to 10−4 mol L−1 

Wu et al.52 
Ag 

Nanoparticl
PCA Carmine dye 

Quantitative 

analysis 
10−8 M 



13 

es 

Ai et al.53 

Silver 

nanoparticle

s 

PCA 
Food 

colorants 

Qualitative and 

quantitative 

determination 

10-8 mol/L 

Weng et 

al.54 

Gold 

nanorods 

PLSR, 

SVMR, 

RF, PCA 

Pirimiphos-

Methyl 

Quantitative 

analysis 
0.25mg/L 

Weng et 

al.55 

Silver 

nanoparticle

s 

RF Fenthion 
Quantitative 

analysis 
0.05mg/L 

Li et al.56 

Silver 

nanoparticle

s 

LS, SVM 

Thiophanate-

methyl and 

carbendazim 

Analyte 

discrimination 
R2

P of 0.986 

Dies et 

al.57 

Silver 

nanoparticle

s 

PCA, 

SVM 
Drugs 

Analyte 

discrimination 

and Quantitative 

analysis 

100% identification 

accuracy and 

LOD100 ppb 

Reza et 

al.58 

Silver 

nanoparticle

s 

PCA 

Heroin and 

methampheta

mine 

Analyte 

discrimination 

95% confidence 

intervals 

Reshma et 

al59 

Gold 

nanorods 
PCA 

Crystal violet 

and picric 

acid  

Quantitative 

analysis 

94.72% 

determination 

coefficients,Comput

ation times ＜10s 

Thrift et 

al.60 

gold 

nanoparticle

s 

CNN 

Rhodamine 

6G, 

methylene 

blue 

Quantitative 

analysis 
10 fM, R2 of 0.958 

Bao et al.61 

Silver 

nanoparticle

s 

PAC, 

SVM 
Flibanserin i 

Analyte 

discrimination 

and Quantitative 

analysis 

1 μg mL−1, 92.3%, 

91.7% and 92.0% 

Li et al.62 

Silver 

nanoparticle

s 

LS-SVM 
Thiophanate-

methyl 

Quantitative 

analysis 

RPD = 6.08, R2
P = 

0.986 and RMSEP = 

0.473 

Cheung et 

al.63 

Gold 

nanorods 

PCA, PLS 

regression, 

ANNs, 

SVR 

Food dye 

Sudan-1 

Quantitative 

analysis 

10−4 mol L−1, R2 ＞ 

0.965 

Dies et 

al.64 

Silver 

nanoparticle

s 

PCA, 

SVM 
Cocaine 

Analyte 

discrimination 

and Quantitative 

analysis 

100 ppb, 98.3% 

accuracy 

Li et al.65 
Silver 

nanoparticle 
ANN, PLS 

Ganciclovir, 

penciclovir, 

valacyclovir-

hydrochloride 

Quantitative 

analysis 
1.0 × 10−6 mol L−1 

Uysal et 

al.66 
/ 

PCA, 

PCR, PLS, 

ANNs 

Butter with 

margarine 

Quantitative 

analysis 

R2 of 0.968, 0.987 

and 0.978 

Weng et 

al.67 

Gold 

nanorods 

CNN, 

FCN, 

PCANet 

Methyl-

pyrimidine 

Analyte 

discrimination 

and Quantitative 

R2 of 0.9997 



14 

analysis 

Yan et al.68 

Gold 

nanoparticle

s 

XGBR 
Escherichia 

coli 

Quantitative 

analysis 

four orders of 

magnitude  

lower than that of 

visual limits 

Villa et 

al.69 

Au coated 

printing 

paper 

MCR-

ALS 
Uric acid 

Quantitative 

analysis 

0.11 mmol L−1, R2 

of 0.989 

Alstrom et 

al.70 

Silicon 

nanopillars 
NMF 17β-Estradiol 

Analyte 

discrimination 
30 SNR 

Luo et al.71 / Vis-CAD 

Polycyclic 

aromatic 

hydrocarbons 

Analyte 

discrimination 

99% identification 

accuracy 

Yang et 

al.72 

Silver 

nanoparticle 
RamanNet Endotoxin 

Analyte 

discrimination 

100% identification 

accuracy 

Banaei et 

al.73 

gold 

nanoparticle

s 

CT 
Extracellular 

vesicles 

Analyte 

discrimination 

95% sensitivity and 

96% specificity 

Cha et al.74 
Quantum 

dot 

barcode-

based ML 
TentaGel etc. 

Analyte 

discrimination 

100% identification 

accuracy 

Fang et 

al.75 
Silver film 

Residual 

network 
Tumor cells 

Analyte 

discrimination 

100% identification 

accuracy 

Erzina et 

al.38 

Gold 

nanoparticle

s 

CNN Tumor cells 
Analyte 

discrimination 

100% identification 

accuracy 

Tang et 

al.76 

Silver 

nanoparticle 
CNN 

Staphylococc

us 

Analyte 

discrimination 

ACC 98.21%, AUC 

99.93% 

Thrift et 

al.77 

Au 

nanosphere 

SVM, 

CNN 

greater 

than 90% 

Pathogen 
Analyte 

discrimination 

Greater than 90% 

identification 

accuracy 

Barucci et 

al.78 

Silver 

Nanowires 

PCA/KM, 

t-SNE/KM 
Proteins 

Analyte 

discrimination 

Greater than 90% 

identification 

accuracy 

Thrift et 

al.79 

Gold 

nanosphere 

Variational 

autoencod

er 

Bacteria 

Analyte 

discrimination 

and Quantitative 

analysis 

0.1μg/ Ml, 99% 

identification 

accuracy 

Rahman et 

al.80 

Bacterial 

cellulose 

nanocrystals 

SVM Bacteria 
Analyte 

discrimination 

87.7% identification 

accuracy 

Nguyen et 

al.81 

Silver 

nanorods 

Reservoir 

computing 

model 

DNA 
Analyte 

discrimination 

99.5% identification 

accuracy 

Shi et al.82 
Silver 

nanoparticle 
DNN DNA 

Analyte 

discrimination 

90.28% 

identification 

accuracy 

Shin et 

al.83 

Gold 

nanoparticle 
PCA Exosomes 

Analyte 

discrimination 

95% identification 

accuracy 
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Karunakara

n et al.84 

Gold 

nanoparticle

s 

SVM 

Cervical 

squamous cell 

carcinoma 

Analyte 

discrimination 

94% identification 

accuracy 

Kazemzade

h et al.85 

Gold 

nanoparticle

s 

PCA 
Extracellular 

vesicles 

Analyte 

discrimination 

100 times more 

sensitive than 

ELISA 

Koster et 

al.86 

Gold 

nanoparticle

s 

PCA-

QDA 

Extracellular 

vesicles 

Analyte 

discrimination 

98.3% identification 

accuracy 

Park et 

al.87 

Gold 

nanoparticle

s 

PCA Exosome 
Analyte 

discrimination 

95.3% sensitivity 

and 97.3% 

specificity 

Lim et al.88 

Gold 

nanoparticle

s 

PCA 
Influenza 

viruses 

Analyte 

discrimination 

95% identification 

accuracy 

Ferreira et 

al.89 

Silver 

nanoparticle 
PCA 

Breast cancer 

exosomes 

Analyte 

discrimination 

10–11 M, 95% 

identification 

accuracy 
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