Identification of fluorescently-barcoded nanoparticles using machine learning

Ana Ortiz-Perez *1, Cristina Izquierdo-Lozano *1, Rens Meijers1, Francesca Grisoni1, Lorenzo Albertazzi1

¹Institute for Complex Molecular Systems (ICMS), Eindhoven University of technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

List of figures and tables

PART 1 Characterization of dye encapsulation

- Fig. S1. Dye encapsulation and fluorescence emission evaluation with bulk spectrophotometry.
- Fig. S2. TIRF images of single Dil-loaded nanoparticles with 1, 10, 75 and 100 uM of dye.
- Fig. S3. Influence of DiO concentration in nanoparticle properties.

PART 2 Bulk physicochemical characterization of barcodes

- **Table S1.** Barcode bulk physicochemical characterization by Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis (NTA).
- **Fig. S4.** Barcode bulk physicochemical characterization. by Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis (NTA).
- Fig. S5. Bulk emission spectra of 26 barcodes excited with 488, 552 and 638 laser lines.

PART 3 Single Nanoparticle optical characterization with Confocal Microscopy

- **Fig. S6.** Single nanoparticle optical characterization with confocal microscopy.
- Fig. S7. Comparison between bulk and single-particle fluorescence intensities for two intensity levels (1, 10 µM) of the same color (Dil).

PART 4 Principal Components Analysis (PCA)

• Fig. S8. Different perspectives of the PCA plot for barcodes 1-26.

PART 5 Machine learning

- **Table S2.** Overview of the unbalance in the dataset.
- **Table S3.** Classifiers trained and compared in the creation of the supervised machine-learning model.
- Table S4. Metrics used to assess the models and their formulas.
- **Table S5.** Scores of the different classifiers trained with the full dataset of 26 barcodes, sorted by higher accuracy first.
- Table S6. Scores of the different classifiers trained with the full dataset of 26 barcodes, sorted by higher accuracy first, using only the features extracted from the three main acquisitions channels (α, β, δ).
- Table S7. Scores of the different classifiers trained with the 10-class model.
- Fig. S9. Feature importance plot of the second-best performing model, a Light Gradient Boosting Machine.
- Fig. S10. Accuracy according to dataset size.
- **Table S8.** Top-performance model, MLP classifier, hyperparameters before and after optimization.
- Fig. S11. y-scrambling analysis of the 10-class model.
- Fig. S12. Metrics per class for each of the 26 models trained to study the trade-off between accuracy and number of classes.
- Table S9. Model stability analysis.

Fig. S1. Dye encapsulation and fluorescence emission evaluation with bulk spectrophotometry (a) DiO spectra of nanoparticles with concentrations ranging from 0.1 μ M to 100 μ M of DiO, (b) Quantification of fluorescence spectra as normalized area under the curve (AUC) of nanoparticles with concentration ranging from 0.1 μ M to 100 μ M of DiO.

Fig. S2. Total internal reflection fluorescence (TIRF) images of single Dil-loaded nanoparticles with 1, 10, 75 and 100 μ M of dye. Optical parameters: 100x, 100 ms, 561 nm excitation at 2% laser power, TIRF angle 3930,0.

Fig S3. Influence of DiO concentration in nanoparticle properties: (a) size measured as hydrodynamic radius (Dynamic light scattering (DLS)) and (b) Z-potential. Three independent measurements, error bars displayed as standard deviation.

PART 2 Bulk physicochemical characterization of barcodes

	Zetasizer characterization/ DLS		n/ DLS	Nanosight Characterization/ NTA				
Barcode	Z-average (nm)	SD	PDI	SD	Size (nm)	SD	NPs/ml *10 ⁹	SE *10 ⁹
1	81.78	0.49	0.08	0.01	99	18.9	1.24	0.0259
2	85.45	0.49	0.08	0.01	102.4	28.3	2.51	0.0501
3	79.93	0.40	0.07	0.01	99.5	18.2	1.72	0.0410
4	83.37	0.43	0.06	0.01	100.5	20.2	1.98	0.0663
5	79.98	0.71	0.07	0.02	97.2	18.7	1.65	0.035
6	82.43	1.05	0.07	0.02	102.7	29	1.48	0.0612
7	77.24	0.28	0.05	0.02	98.9	19.2	1.45	0.0231
8	80.98	0.52	0.07	0.01	99	25.4	2.21	0.0264
9	78.20	0.79	0.07	0.01	97.9	20.7	1.67	0.04
10	80.60	0.70	0.06	0.02	98.5	24.0	1.99	0.0173
11	81.66	0.88	0.07	0.02	99.2	15.7	1.64	0.822
12	85.13	0.50	0.07	0.01	102.7	21.4	1.91	0.0483
13	81.55	3.27	0.06	0.03	101.2	17.8	1.42	0.0277
14	86.94	0.46	0.06	0.02	107	20.0	1.18	0.069
15	82.35	0.40	0.08	0.01	100.4	18.2	1.87	0.0843
16	85.11	1.04	0.07	0.02	100.9	20.3	1.92	0.0267
17	82.87	0.59	0.06	0.01	103.9	16.7	1.89	0.0112
18	87.68	0.95	0.05	0.02	99.4	19.2	2	0.0144
19	81.83	0.53	0.08	0.01	98.9	16.2	2.31	0.0455
20	84.05	0.28	0.06	0.02	98.6	15.8	1.75	0.0421
21	85.56	0.67	0.07	0.02	102.1	23.2	1.42	0.0144
22	87.96	0.87	0.06	0.02	101.3	17.7	1.52	0.0269
23	86.53	0.57	0.07	0.01	102.8	20	1.45	0.0241
24	86.57	1.30	0.07	0.02	102.7	17.7	1.55	0.0593
25	88.15	0.63	0.06	0.01	107.3	31.2	1.39	0.0284
26	91.72	1.25	0.08	0.02	103.5	19.0	2	0.0422

 Table S1. Barcode bulk physicochemical characterization by Dynamic Light Scattering (DLS)

 and Nanoparticle Tracking Analysis (NTA).

PDI= poly dispersity index, NPs = Nanoparticles, SD= Standard Deviation, SE = Standard Error of the mean

Fig S4. Barcode bulk physicochemical characterization by Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis (NTA). (a) Mean diameter of 26 barcodes and DLS. (b) Polydispersity index (PDI) measured by DLS. Average of three measurements, error bars displayed as standard deviation (SD). (c) Mean diameter of 26 barcodes and (d) number concentration (NP/mI) estimated by NTA. Average of three measurements, errors displayed as standard deviation (SD) for the size and standard error of the mean (SE) for the number concentration .

Fig S5. Bulk fluorescence emission spectra of 26 barcodes excited with 488, 552 and 638 nm laser lines, emission collected from 498-750 nm, 562-750 nm and 648-750 nm.

Fig S6. Single nanoparticle optical characterization with confocal microscopy. (a) Dil loaded Poly Lactic-co-glycol Acid – Poly ethylene glycol PLGA-PEG nanoparticles physiosorbed on a glass surface at a medium to low density, (b) zoom in of one point spread function (nanoparticle) and (c) corresponding intensity profile displaying the classical gaussian-shape that is characteristic of a point spread function.

Fig. S7. Comparison between bulk and single-particle fluorescence intensities for two intensity levels (1, 10 μ M) of the same color (Dil). (a) Fluorescence spectra of 1 and 10 μ M Dil particles measured with (bulk) spectrophotometry. (b) Distribution of fluorescence intensities of 1 and 10 μ M particles quantified from (c) confocal images.

Fig. S8. Different perspectives of the PCA plot for barcodes 1-26. The interactive MATLAB figure can be found in <u>https://github.com/n4nlab/BarcodedNanoparticles</u>. Explained variances for each principal component (PC): PC1 = 80.4087%, PC2 = 13.0798% and PC3 = 5.6811%. (a) 2D plot, (b) 3D plot, side view. (c) 3D plot, front view.

PART 5 Machine learning

Barcode (class)	Samples	Barcode (class)	Samples
1	2902	14	4356
2	4704	15	2488
3	3266	16	7658
4	3700	17	3851
5	1458	18	3195
6	2768	19	2078
7	2091	20	4984
8	3612	21	4213
9	2139	22	3955
10	3424	23	4074
11	3797	24	9784
12	3817	25	6876
13	4906	26	5102

 Table S2. Overview of the unbalance in the dataset.

Table S3. Classifiers trained and compared in the creation of the supervised machine-learning model.

Classifier	Abbreviation	Туре
Logistic Regression	lr	Linear
K Neighbors Classifier	knn	Non-linear
Naive Bayes	nb	Linear
Decision Tree Classifier	dt	Non-linear
SVM - Linear Kernel	svm	Linear
SVM - Radial Kernel	rbsvm	Linear
MLP Classifier	mlp	Non-linear
Ridge Classifier	ridge	Linear
Random Forest Classifier	rf	Non-linear
Quadratic Discriminant Analysis	qda	Non-linear
Ada Boost Classifier	ada	Non-linear
Gradient Boosting Classifier	gbc	Non-linear
Linear Discriminant Analysis	lda	Linear
Extra Trees Classifier	et	Non-linear
Light Gradient Boosting Machine	lightgbm	Non-linear

Table S4. Metrics used to assess the models and their formulas. <u>Notations</u>: n = number of samples; G = number of classes; $n_g =$ number of samples belonging to the g-th class; $n'_g =$ number of samples predicted in the g-th class; $c_{gg} =$ number of correctly classified samples; $c_{gk} =$ number of samples belonging to class g and predicted as belonging to class k.

Metric	Formula
Accuracy	$\frac{\sum_{g=1}^{G} c_{gg}}{n}$
Balanced accuracy	$\frac{\sum_{g=1}^{G} \frac{c_{gg}}{n_g}}{G}$
Sensitivity	$\sum_{g=1}^{G} \frac{c_{gg}}{n_g}$
Average Precision	$\frac{\sum_{g=1}^{G} \frac{c_{gg}}{n'_{g}}}{G}$
Precision	$rac{c_{gg}}{n'_g}$
F1 score	$2 \times \frac{Precision \times Sensitivity}{Precision + Sensitivity}$
Matthew's Correlation Coefficient (MCC)	$\frac{\sum_{g=1}^{G}\sum_{k=1}^{G}\sum_{m=1}^{G}(c_{gg} \cdot c_{km} - c_{gk} \cdot c_{mg})}{\sqrt{\sum_{g=1}^{G}\left[(\sum_{k=1}^{G}c_{gk}) \cdot (\sum_{\substack{f=1\\f\neq g}}^{G}\sum_{m=1}^{G}c_{fm})\right] \cdot \sqrt{\sum_{g=1}^{G}\left[(\sum_{k=1}^{G}c_{kg}) \cdot (\sum_{\substack{f=1\\f\neq g}}^{G}\sum_{m=1}^{G}c_{fm})\right]}}$

Table S5. Scores of the different classifiers trained with the full dataset of 26 barcodes, sorted by higher accuracy first. TT = Total Time. Pycaret's automatic output.

Model	Accuracy	Balanced accuracy	Average Precision	F1	мсс	TT (s)
MLP Classifier (mlp)	0.6429	0.6021	0.6501	0.6346	0.6262	11.5060
Random Forest Classifier (rf)	0.5983	0.5548	0.5950	0.5872	0.5742	1.5420
Extra Trees Classifier (et)	0.5808	0.5398	0.5819	0.5726	0.5607	0.9150
Gradient Boosting Classifier (gbc)	0.5785	0.5331	0.5835	0.5675	0.5586	56.3090
Light Gradient Boosting Machine (lightgbm)	0.5708	0.5311	0.5716	0.5631	0.5501	2.3770
SVM – radial kernel (rbfsvm)	0.5643	0.5096	0.6218	0.5496	0.5466	36.9260
Logistic Regression (Ir)	0.5490	0.5012	0.5725	0.5309	0.5290	5.5390
K-neighbors Classifier (knn)	0.5003	0.4707	0.5099	0.4977	0.4770	0.7070
Decision Tree Classifier (dt)	0.4862	0.4512	0.4890	0.4872	0.4616	0.1590
SVM – Linear kernel (svm)	0.4473	0.4011	0.4671	0.4200	0.4227	0.2210
Linear Discriminant Analysis	0.4315	0.4094	0.4648	0.4165	0.4080	0.0470

(Ida)						
Ridge Classifier (ridge)	0.3694	0.2679	0.3194	0.2809	0.3410	0.1300
Naïve Bayes (nb)	0.3143	0.3239	0.4796	0.2881	0.2969	0.0290
Quadratic discriminant Analysis (qda)	0.2284	0.2248	0.2299	0.1929	0.2178	0.0320
Ada Boost Classifier (ada)	0.2055	0.1928	0.2095	0.1530	0.1795	0.9500

Table S6. Scores of the different classifiers trained with the full dataset of 26 barcodes, sorted by higher accuracy first, using only the features extracted from the three main acquisitions channels (α , β , δ). TT = Total Time. Pycaret's automatic output.

Model	Accuracy	Balanced accuracy	Average precision	F1	мсс	TT (s)
Gradient Boosting Classifier (gbc)	0.4215	0.4235	0.4623	0.4149	0.4008	8.2880
Logistic Regression (Ir)	0.4075	0.4102	0.5843	0.3876	0.3909	4.7630
Light Gradient Boosting Machine (lightgbm)	0.4063	0.4075	0.4321	0.4033	0.3840	0.9450
K-neighbors Classifier (knn)	0.3791	0.3801	0.4001	0.3779	0.3554	0.1370
MLP Classifier (mlp)	0.3562	0.3568	0.4428	0.3104	0.3397	0.7610
Random Forest Classifier (rf)	0.3561	0.3544	0.3586	0.3562	0.3304	0.4640
Extra Trees Classifier (et)	0.3504	0.3487	0.3526	0.3505	0.3244	0.3550
Decision Tree Classifier (dt)	0.3325	0.3310	0.3347	0.3326	0.3058	0.0230
Naïve Bayes (nb)	0.2985	0.2964	0.4345	0.2460	0.2848	0.0110
Linear Discriminant Analysis (Ida)	0.2864	0.2826	0.3310	0.2646	0.2615	0.0120
Ridge Classifier (ridge)	0.2251	0.2218	0.1795	0.1432	0.2028	0.0080
SVM – radial kernel (rbfsvm)	0.1626	0.1633	0.1797	0.1454	0.1428	26.6900
SVM – Linear kernel (svm)	0.1436	0.1426	0.0784	0.0700	0.1221	0.2010
Ada Boost Classifier (ada)	0.1329	0.1325	0.0682	0.0602	0.1090	0.3240
Quadratic discriminant Analysis (qda)	0.0380	0.0385	0.0014	0.0028	0.0000	0.0070

Table S7. Scores of the different classifiers trained with the 10-class model, sorted by higher accuracy. TT = Total Time. Pycaret's automatic output.

Model	Accuracy	Balanced accuracy	Average precision	F1	мсс	TT (s)
MLP Classifier (mlp)	0.8550	0.8375	0.8572	0.8550	0.8365	4.3260
Light Gradient Boosting Machine (lightgbm)	0.8337	0.8150	0.8343	0.8332	0.8123	0.5140
Random Forest Classifier (rf)	0.8192	0.7996	0.8200	0.8181	0.7960	0.4240
Gradient Boosting Classifier (gbc)	0.8130	0.7940	0.8141	0.8120	0.7890	7.8200
Extra Trees Classifier (et)	0.8126	0.7933	0.8131	0.8111	0.7885	0.2360
SVM – radial kernel (rbfsvm)	0.7966	0.7725	0.8046	0.7950	0.7710	4.8650
Logistic Regression (Ir)	0.7796	0.7572	0.7827	0.7782	0.7516	1.0870
K-neighbors Classifier (knn)	0.7595	0.7372	0.7592	0.7568	0.7288	0.2130
Decision Tree Classifier (dt)	0.7526	0.7328	0.7529	0.7523	0.7209	0.0530
SVM – Linear kernel (svm)	0.7477	0.7179	0.7549	0.7421	0.7165	0.0500
Linear Discriminant Analysis (Ida)	0.6877	0.6730	0.7127	0.6892	0.6504	0.0240
Ridge Classifier (ridge)	0.6448	0.5696	0.6586	0.6224	0.6004	0.0160
Naïve Bayes (nb)	0.5599	0.5350	0.6595	0.5130	0.5232	0.0170
Ada Boost Classifier (ada)	0.4969	0.3915	0.3911	0.3879	0.4437	0.2840
Quadratic discriminant Analysis (qda)	0.4340	0.4394	0.2967	0.3397	0.3984	0.0180

Fig. S9. Feature importance plot of the second-best performing model, a Light Gradient Boosting Machine. Pycaret's automatic output.

Fig. S10. Accuracy according to dataset size.

Table S8. Top-performance model, MLP classifier, hyperparameters before and after optimization. More information on these parameters can be found in Pycaret and scikit-learn's documentation. Highlighted in yellow, the hyperparameters that had changed.

Parameter	Value before optimization	Value after optimization	Explanation
Activation function	relu	relu	Activation function for the hidden layer.
Alpha	0.0001	0.001	Strength of the L2 regularization term. The L2 regularization term is divided by the sample size when added to the loss.
Batch size	Auto	Auto	Size of minibatches for stochastic optimizers.
Beta 1	0.9	0.9	Exponential decay rate for estimates of first moment vector in adam, should be in [0, 1). Only used when solver='adam'.
Beta 2	0.999	0.999	Exponential decay rate for estimates of second moment vector in adam, should be in [0, 1). Only used when solver='adam'.
Early stopping	False	False	Whether to use early stopping to terminate training when validation score is not improving. If set to true, it will automatically set aside 10% of training data as validation and terminate training when validation score is not improving by at least tol for n_iter_no_change consecutive epochs. The split is stratified, except in a multilabel setting. If early stopping is False, then the training stops when the training loss does not improve by more than tol for n_iter_no_change consecutive passes over the training set. Only effective when solver='sgd' or 'adam'.
Epsilon	1e-08	1e-08	Value for numerical stability in adam. Only used when solver='adam'.
Hidden layer sizes	(100,)	[50,50]	The ith element represents the number of neurons in the ith hidden layer.
Learning rate	Constant	adaptive	Learning rate schedule for weight updates. 'constant' is a constant learning rate given by 'learning_rate_init'. 'adaptive' keeps the learning rate constant to 'learning_rate_init' as long as training loss keeps decreasing. Each time two consecutive epochs fail to decrease training loss by at least tol, or fail to increase validation score by at least tol if 'early_stopping' is on, the current learning rate is divided by 5.
Learning rate init	0.001	0.001	The initial learning rate used. It controls the step-size in updating the weights.
Max iterations	500	500	Maximum number of iterations. The solver iterates until convergence (determined by 'tol') or this number of iterations. For stochastic solvers ('sgd', 'adam'), note that this determines the number of epochs (how many times each data point will be used), not the number of gradient steps.
Number iterations (no change)	10	10	Maximum number of epochs to not meet <i>tol</i> improvement. Only effective when solver='sgd' or 'adam'.
Random state	6971	6971	Determines random number generation for weights and bias initialization, train-test split if early stopping is used, and batch sampling when solver='sgd' or 'adam'. Pass

			an int for reproducible results across multiple function calls.
Shuffle	True	True	Whether to shuffle samples in each iteration.
Solver	adam	adam	The solver for weight optimization.
Tol	0.0001	0.0001	Tolerance for the optimization. When the loss or score is not improving by at least tol for n_iter_no_change consecutive iterations, unless learning_rate is set to 'adaptive', convergence is considered to be reached and training stops.
Verbose	False	False	Whether to print progress messages to stdout.
Warm start	False	False	When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution.

Fig. S11. y-scrambling analysis of the 10-class model. The analysis was performed shuffling the label column (Barcode ID) and re-training the model in 100 iterations.

0.883	0.872	0.878
0 0.819	0.857	0.837
0 0.801	0.871	0.835
0 0.735	0.430	0.543
0 0.630	0,636	0.633
0 0.540	0.506	0.522
0 0.536	0.290	0.376
0 0.668	0.475	0.555
0 0.559	0.504	0.530
0.588	0.583	0.585
0 0.554	0.850	0.671
0 0.679	0.470	0.555
0.608	0.586	0.597
0.580	0.751	0.654
0.854	0.717	0.780
0.610	0.557	0.583
0.621	0.423	0.504
0.446	0.505	0.474
0.521	0.636	0.573
0.630	0.468	0.537
0.580	0.336	0.426
0.500	0.535	0.517
0.668	0.652	0.660
0 0.523	0.760	0.620
0 0.650	0.705	0.676
0.800	0.799	0.799
0	1	~

25.0	0.927	0.839	0 881	Class	Barcode	Class	Barcode
24.0	0.833	0.863	0.848	1	1		4.5
23.0	0,810	0.879	0.843		1	14	15
22.0	0.607	0.589	0.598	2	2	15	16
1.0 🔳	0.566	0.735	0.640			15	10
0.0 🔳	0.573	0,491	0.529	3	3	16	17
9.0 🔳	0.564	0.272	0.367				
8.0 🔳	0.641	0.571	0.604	4	4	17	18
7.0	0.578	0.480	0.525	-	-		
6.0	0,487	0.698	0.574	5	5	18	19
5.0	0.548	0.846	0.665	6	6	19	20
4.0 🔳	0.638	0.551	0.591	0			
3.0	0.706	0.571	0.631	7	7	20	24
2.0	0.688	0.597	0.639	· ·		20	21
1.0	0.856	0.720	0.782	8	8	21	22
0.0	0.578	0.575	0.577				
9.0	0.705	0.451	0.550	9	10	22	23
8.0	0.527	0.553	0.540				
7.0	0.603	0.451	0.516	10	11	23	24
6.0	0.468	0.447	0.457				
5.0	0.560	0.531	0.548	11	12	24	25
40	0.708	0.636	0.670	12	4.2	25	26
3.0	0.601	0.652	0.626	12	13	25	26
2.0	0.656	0.758	0.703	12	14		
10	0.763	0.831	0.795	15	14		
	2	A.	0				

		MLPClassifier Cla	ssification Repo	rt			
24.0	0.933	0.847	0.888	Class	Barcode	Class	Barcode
23.0	0 8 3 8	0.830	0.837	1	1	13	15
22.0	0.612	0.865	0.658			10	15
21.0	0.690	0.434	0.533	2	2	14	16
20.0	0.563	0.027	0.506				
19.0	0.000	0.433	0.366	3	3	15	17
17.0	0.636	0.466	0.500	1	4		
16.0	0.541	0.551	0.546	4	4	16	18
15.0	0.618	0.615	0.616	5	5	17	10
14.0	0.585	0.881	0.703			1/	19
13.0	0.617	0.530	0.570	6	7	18	20
12.0	0.667	0 577	0.619			10	20
11.0	0.660	0.588	0.622	7	8	19	21
10.0	0.800	0.785	0.792		10		
90	0.677	0.522	0.589	8	10	20	22
8.0	0.585	0.466	0.519	9	11	21	22
7.0	0.526	0.631	0.574			21	23
6.0	0.683	0.425	0.524	10	12	22	24
5.0	0.490	0.563	0.524				
4.0	0.624	0.718	0.668	11	13	23	25
3.0	0.531	0.712	0.608				
2.0	0.549	0.895	0.681	12	14	24	26
1.0	0,740	0.837	0.786				
	æ	(all	0				

		MLPClassifier Clas	ssification Report				
23.0	0.896	0.875	0.885	Class	Barcode	Class	Barcode
22.0	0.829	0.854	0.842	1	1	42	10
21.0	0.781	0.919	0.844	1	1	13	16
20.0	0.590	0.551	0.570	2	2	14	17
19.0	0.678	0.565	0.617			14	1/
18.0	0.586	0.444	0.506	3	3	15	18
17.0	0.744	0.233	0.355				
16.0	0.661	0.442	0.530	4	4	16	19
15.0	0.536	0.646	0.585	5	7		
14.0	0.581	0.603	0.592	5	'	17	20
13.0	0.578	0.906	0.705	6	8	10	21
12.0	0.602	0.620	0.611	-	-	10	21
11.0	0.754	0.526	0.619	7	10	19	22
10.0	0.623	0.626	0.624	-			
9.0	0.830	0.787	0.808	8	11	20	23
8.0	0.678	0.404	0.507	0	12		
7.0	0.638	0.506	0.564	9	12	21	24
6.0	0.543	0.599	0.569	10	13	22	25
5.0	0.661	0.437	0.527	10	10		25
4.0	0.608	0.753	0.673	11	14	23	26
3.0	0.602	0.655	0.627				
2.0	0.621	0.836	0.712	12	15		
1.0	0.783	0.804	0.793				
	100	.call	\$				
	dect.	¢.					

77.0	0.019	A 954	A 995	
22.0	0.916	0.034	0.000	Class Ba
21.0	0.032	0.079	0.000	1
20.0	0.654	0.645	0.000	
19.0	0.650	0.487	0.557	2
18.0	0.665	0.625	0,644	2
17.0	0.620	0.520	0.565	3
16.0	0.588	0.320	0.415	4
15.0	0.612	0.504	0.553	
14.0	0.583	0.565	0.574	5
13.0	0.599	0.710	0.650	
12.0	0.592	0.857	0.700	6
11.0	0.578	0.648	0.611	
10.0	0.634	0.655	0.644	7
9.0	0.558	0.708	0.624	0
8.0	0.887	0.733	0.803	•
7.0	0.718	0.431	0.538	9
6.0	0.628	0.511	0.563	
5.0	0.671	0.431	0.525	10
4.0	0.704	0.730	0.717	
3.0	0.589	0.705	0.642	11
2.0	0.646	0 797	0.714	
1.0	0.750	0.850	0.797	
	30.	ile.	0	
	recisi	e.		

Class	Barcode		Barcode
1	1	12	16
2	2	13	17
3	3	14	18
4	4	15	19
5	7	16	20
6	10	17	21
7	11	18	22
8	12	19	23
9	13	20	24
10	14	21	25
11	15	22	26

		MLPClassifier Cla	ssification Repor	rt						MLPClassifier Cla	ssification Repo	rt	
19	0.680	0.583	0.628	Class	Barcode	Class	Barcode	18	0.665	0.592	0.626	Class	Barcod
18	0.810	0.750	0.779		1	10	45	17	0.826	0.751	0.787		1
17	0.600	0.505	0.548		1	10	15	16	0.598	0.553	0.574		-
16	0,794	0.554	0.652	1	2	11	16	15	0.714	0.640	0.675	1	2
15	0.646	0.556	0.598	2	2			14	0.650	0.566	0.605	2	2
14	0.676	0.751	0.711	2	3	12	17	13	0.680	0.749	0.713	<u> </u>	5
13	0,592	0.773	0.671	3	4	12	40	12	0.551	0.779	0.646	3	4
12	0.943	0.833	0.885			13	18	11	0.602	0.844	0.703		
11	0.614	0.860	0.716	4	7	14	21	10	0.888	0.907	0.897	4	7
10	0.830	0.871	0.850	-	10			9	0.808	0.864	0.835	6	10
9	0.843	0.832	0.837		10	15	22	8	0.650	0.546	0.594		10
8	0.61/	0.568	0.592	6	11			7	0.621	0.645	0.633	6	11
7	0.653	0.581	0.615			16	23	6	0.579	0.519	0.547		
0	0.624	0.580	0.601	7	12	17	24	5	0.619	0.505	0.556	7	12
2	0.605	0.601	0.648		12	1/	21	4	0.680	0.585	0.629	•	12
-	0.778	0.036	0.846	°	15	18	25	3	0.831	0.869	0.850	°	15
2	0.690	0.592	0.637	9	14	10	26	2	0.692	0.587	0.635	9	14
1	0.681	0.611	0.644			19	20	1	0.893	0.864	0.879		
0	0.850	0.804	0.826					0	0.847	0.779	0.811		
	CISION	HC31	\$						CENT	RCall	\$		

		MLPClassifier Cla	ssification Report	
17	0.911	0.847	0.878	Class
16	0.672	0.651	0,661	0
15	0.806	0.768	0.787	
14	0.835	0.533	0.651	1
13	0.735	0.494	0.591	2
12	0.664	0.780	0.717	
11	0.609	0.765	0.678	3
10	0.673	0.791	0.727	4
9	0.905	0.896	0.901	
8	0.828	0.859	0.843	5
7	0.750	0.723	0.736	6
6	0.631	0.665	0.647	-
5	0.604	0.553	0.577	7
4	0.602	0.488	0.539	8
3	0.661	0.627	0.644	0
2	0.783	0.930	0.850	
1	0.659	0.641	0.650	
0	0.852	0.780	0.814	
	pecision	RECON	\$	
	20201			

			16	0.716
Barcode	Class	Barcode	15	0.907
1	9	15		0.507
2	10	16	12	0.0034
3	11	17	12	0.806
5		17	11	0.681
4	12	18	10	0.679
7	13	21	0	0.691
			8	0.887
10	14	22	7	0.876
12	15	23	6	0.821
12			5	0.637
13	16	25	4	0.620
14	17	26	3	0.596
		1	2	0.604
			1	0.776
				0.975
				0.075
				alon
				Acc

1 0

0.911 pectage

MLPClassifier Cla	ssification Report
0.617	0.663

0.880

0.818 0.634 0.714

0.708

0.886

0.886 0.857 0.761 0.632 0.563 0.575 0.663

0.848

0.824

0

ŵ

0.854

0.803 0.523

0.739 0.809 0.885

0.838

0.517 0.556 0.734

0.934

0.778

Recall

	Barcode	Class	
0	1	9	16
1	2	10	17
2	3	11	18
3	4	12	21
4	10	13	22
5	12	14	23
6	13	15	25
7	14	16	26
8	15		

15

16

17

18

21

22

23

25

26

10

11

12

13

14

15

16

17

18

	MLPClassifier Cla	ssification Repo	rt
0.628	0.709	0.666	Class
0.906	0.973	0.938	0
0.766	0.745	0.756	1
0.894	0.894	0.894	2
0.728	0.623	0.672	
0.870	0,777	0.821	3
0.762	0.737	0.749	4
0.652	0.893	0.753	5
0.926	0.882	0.904	6
0.844	0.886	0.865	
0.847	0.665	0.745	7
0.629	0.650	0.639	
0.610	0.590	0.600	
0.609	0.527	0.565	

ecalit

Barcode	Class	Barcode
1	8	17
2	9	18
4	10	21
12	11	22
13	12	23
14	13	25
15	14	26
16		

15	0.912	0.968	0.939	С
14	0.682	0.619	0.649	
13	0.936	0.860	0.896	
12	0.702	0.672	0.687	
11	0.851	0.734	0.788	
10	0.788	0.667	0.723	
9	0.640	0.781	0.704	
8	0.672	0.801	0.731	
7	0.921	0.899	0.910	
6	0.824	0.899	0.860	
5	0.789	0.692	0.738	
4	0.655	0.616	0.635	
3	0.611	0.593	0.602	
2	0.565	0.533	0.548	
1	0.610	0.690	0.647	1
0	0.863	0.823	0.843	
	. Children	mcall.	0	
	40			

	Barcode	Class	Barcode	14
0	1	8	16	13
1	2	9	17	12
2	3	10	18	11
				10
3	4	11	21	9
4	12	12	22	8
5	13	13	23	7
				6
6	14	14	25	5
7	15	15	26	4
				3
				2

13	0.622	0.468	0.534	Class	Barcode
12	0.668	0.679	0.674	0	1
11	0.905	0.976	0.939	1	4
10	0.750	0.770	0.760	2	12
9	0.921	0.868	0.894	3	13
8	0.801	0.859	0.829		1.4
7	0.822	0.774	0.798	4	14
6	0.707	0.837	0.767	5	15
5	0.903	0.904	0.904	6	16
4	0.860	0.855	0.857		
3	0.801	0.750	0.775		
2	0.641	0.703	0.671		
1	0.646	0.566	0.603		
0	0.884	0.865	0.875		
	an a	1	0		

			MLPClassifier Clas	
Barcode	12	0.637	0.480	
17	11	0.644	0.674	
18	10	0.893	0.976	Ì
21	9	0.816	0.677	
22	8	0.924	0.881	
23	7	0.758	0.912	
25	6	0.843	0.742	
26	5	0.803	0.629	
	4	0.838	0.913	
	3	0.844	0.681	j
	2	0.643	0.773	l
	1	0.572	0.631	
	0	0.922	0.850	
		precision	Recall	

MLPClassifier Cla	ssification Report
0.480	0.548
0.674	0.658

0.933

0.902

0.828 0,789

0.706 0.874 0.753 0.702

0.600 0.885 \$

Class	Barcode	Class	Barcode
0	1	7	17
1	4	8	18
2	12	9	21
3	13	10	22
4	14	11	23
5	15	12	25
6	16		

		Mer classifier cla	o son
	0.644	0.762	0.698
5	0.634	0.495	0.556
9	0.739	0.673	0.704
8	0.914	0.960	0.937
,	0.799	0.747	0.772
5	0.929	0.879	0.903
5	0.785	0.913	0.845
4	0.778	0.830	0.804
3	0.899	0.829	0.863
2	0.868	0.709	0.780
1	0.685	0.766	0.723
0	0.892	0.889	0.891
	de la		0

lass	Barcode	Class	Barcode	10
0	1	6	17	
1	12	7	18	9
2	13	8	21	8
3	14	9	22	7
4	15	10	23	6
5	16	11	25	5
				4

Class

7 8

9

10 11

12

		MLPClassifier Cla	ssification R
0	0.685	0.663	0.674
9	0.652	0.535	0.588
8	0.709	0.733	0,721
7	0.946	0.958	0.952
6	0.752	0.837	0.792
5	0.912	0.916	0.914
4	0.887	0.949	0.917
3	0.806	0.822	0.814
2	0.873	0.878	0.876
1	0.721	0.712	0.717
0	0.952	0.881	0.915

	Barcode	Class	Barcode
0	1	6	17
1	12	7	18
2	13	8	21
3	14	9	22
4	15	10	25
5	16		

Class	Barcode	Class	Barcode
0	1	5	16
1	12	6	17
2	13	7	18
3	14	8	21
4	15		

0.648	0.720	0.682
0.878	0.735	0.800
0.767	0.667	0.713
0.922	0.970	0.946
0.764	0.846	0.803
0.934	0.930	0.932
0.906	0.934	0.920
0.856	0.796	0.825
0.866	0.891	0.878
0.929	0.889	0.909

Class	Barcode	Class	Barcode	8
0	1	5	16	
1	12	6	17	7
2	13	7	18	6
3	14	8	21	
4	15	9	25	5

_	MLPClassifier Classification Repo					
8	0.742	0.756	0.749			
7	0.830	0.759	0.793			
6	0.712	0.725	0.719			
5	0.909	0.973	0.940			
4	0.795	0.788	0.792			
3	0.959	0.884	0.920			
2	0.901	0.942	0.921			
1	0.953	0.924	0.938			
0	0.930	0.877	0.903			
100	a color	(Call	\$			
	4					

0.890	0.945	0.917
0.848	0.831	0.840
0.926	0.971	0.948
0.886	0.757	0.817
0.928	0.917	0.922
0.885	0.943	0.913
0.946	0.922	0.934
0.968	0.847	0.903
sion	(all	\$

4

3

2

1

0

Class	Barcode	
0	1	6
1	12	
2	13	5
3	14	
4	15	4
5	16	
6	18	
7	21	3
		2

1

12

13

14

16

21

_		MLPClassiner Cla	ssincation Repor	tion Report	
6	0.913	0.938	0.925		
5	0.936	0.874	0.904		
4	0.934	0.976	0.954		
3	0.950	0.912	0.931		
2	0.911	0.938	0.925		
1	0.945	0.925	0.935		
0	0.931	0.893	0.912		
100	1. Salar	RCall.	\$		

Class	Barcode
0	1
1	12
2	13
3	14
4	16
5	18
6	21

Class Barcode 0.961 0.944 0 1 2 0.958 0.994 0.975 3 4 5 0.874 0.968 0.919 0.896 0.957 0.926 0.957 0.917 0.936 0.909 0.944 pectator ecali \$

MLPClassifier Classification Report

	MLPClassifier Classification Report				
3	0.969	0.988	0.979		
2	0.967	0.940	0.953		
1	0.996	0.988	0.992		
0	0.991	0.990	0.991		
	AFCONDE	READ	\$		

Fig. S12. Metrics per class for each of the 26 models trained to study the trade-off between accuracy and number of classes. Next to them, the correspondence between the class and the barcode they represent. Recall is synonim to sensitivity.

Table S9. Model stability analysis. Performing the random splits (80% training - 20% testing) over 5 iterations on the same dataset generates 5 10-classes models. The average precision and sensitivity on predictions made using the training and testing sets are given below. This way the models stability and any potental overfitting are assessed.

Barcode ID		Training set		Testing set	
		Mean	SD	Mean	SD
4	Precision	0.94	0.01	0.92	0.01
1	Sensitivity	0.93	0.02	0.93	0.02
12	Precision	0.88	0.02	0.83	0.02
12	Sensitivity	0.89	0.02	0.87	0.01
42	Precision	0.89	0.02	0.90	0.02
13	Sensitivity	0.93	0.02	0.91	0.01
14	Precision	0.96	0.01	0.97	0.01
14	Sensitivity	0.91	0.02	0.88	0.02
15	Precision	0.82	0.04	0.82	0.03
15	Sensitivity	0.84	0.02	0.85	0.02
16	Precision	0.90	0.01	0.89	0.01
10	Sensitivity	0.94	0.01	0.94	0.01
17	Precision	0.72	0.02	0.69	0.02
17	Sensitivity	0.81	0.03	0.75	0.03
10	Precision	0.83	0.02	0.83	0.02
10	Sensitivity	0.80	0.04	0.79	0.02
21	Precision	0.74	0.02	0.73	0.02
21	Sensitivity	0.67	0.05	0.68	0.05
25	Precision	0.91	0.03	0.86	0.03
23	Sensitivity	0.85	0.03	0.81	0.03
Global	Balanced accuracy	0.86	0.03	0.84	0.00