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S1 Details of theoretical analysis of the eigenmodes

The total kinetic energy T and potential energy U of a qPlus sensor are given by Eq. 1 shown in

the text. Using Eq. 1 along with Hamilton’s principle, we obtain the equations of motion for free

undamped oscillations,
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and the boundary conditions for the QTF prong,
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and the boundary conditions for the tungsten needle,

u(0, t) = 0, (S3a)
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As the global displacement of the tungsten needle, v(x2, t) = u(x2, t)+
(
x2 +

h
2

)
∂w
∂x1

(L, t), is induced

under an assumption that the bending displacements of the beams and the gradient at the end of the

QTF prong are small (w(x1, t),u(x2, t)� h and ∂w
∂x1

(L, t)� 1), the equations of motion and boundary

conditions change into the form of Eqs. 2-4 shown in the text. Using the method of separation of

variables, the solutions of the displacements of the QTF prong and tungsten needle are assumed as

w(x1, t) = exp(iωt)Φ(x1) and v(x2, t) = exp(iωt)Ψ(x2), where exp(iωt) is the temporal component of

the solution with an angular frequency ω, and Φ(x1) and Ψ(x2) are the spatial components of the

solution. By substituting the solutions of the displacements into Eq. S1 and eliminating the temporal

component, the equations of the spatial components are given below:

∂ 4Φ

∂x4
1
(x1) =

ω2ρqAq

EqIq
Φ(x1) , (S4a)

∂ 4Ψ

∂x4
2
(x2) =

ω2ρwAw

EwIw
Ψ(x2) . (S4b)

Then, the general solutions of Φ(x1) and Ψ(x2) are given by,

Φ(x1) =C1 sin(αx1)+C2 cos(αx1)+C3 sinh(αx1)+C4 cosh(αx1) ,

α = 4

√
ω2ρqAq

EqIq
,

(S5a)

Ψ(x2) = D1 sin(βx2)+D2 cos(βx2)+D3 sinh(βx2)+D4 cosh(βx2) ,

β = 4

√
ω2ρwAw

EwIw
.

(S5b)

The boundary conditions Eqs. S2a and S2b (same as Eqs. 3a and 3b in the text) lead C4 = −C2

and C3 = −C1. Substituting Eq. S5 for the remaining boundary conditions, we obtain a 6× 6 matrix

1–11 | 3



equation, 

M11 M12 . . . M16

M21 M22 . . . M26

...
... . . . ...

M61 M62 . . . M66





C1

C2

D1

D2

D3

D4


= 0. (S6)

The elements of the matrix [M] in Eq. 8 are given by,

M11 =−α
h
2
(cos(αL)− cosh(αL)) ,

M12 =−α
h
2
(−sin(αL)− sinh(αL)) ,

M13 = M15 = M24 = M26 = M33 = M34 = M35 = M36 = M51 = M52 = M61 = M62 = 0,

M14 = M16 = 1,

M21 =−α (cos(αL)− cosh(αL)) ,

M22 =−α (−sin(αL)− sinh(αL)) ,

M23 = M25 = β ,
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2 d
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M66 =

(
−EwIwβ

2 +
1
4

lcMcω
2
)

cosh(β lb)+

((
1
4

lc

)2

Mc + Ic

)
ω

2 sinh(β lb) .

All elements of the matrix Mi j shown here are functions of α and β . According to Eq. S5, they

can be represented only by functions of the angular frequency ω. For a non-trivial solution to exist,

the determinant of the coefficient matrix in Eq. S6 should be equal to zero. The countably infinite

solutions for ω derived from the equation,

detM = 0. (S7)

Note that it is very difficult to obtain an explicit formula for the roots of Eq. S7, but we can eas-

ily find the roots by examining the zero crossings of the plot of the left-hand term of the equation

with respect to ω. The roots of Eq. S7 correspond to the eigenfrequencies of the qPlus sensor,

fi = ωi/2π (i = 1,2,3...). The shape of the eigenmode was determined via Eq. S5 with the coefficients

corresponding to the eigenfrequency, C1 · · ·D4, derived from Eq. S6.
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S2 FEM results

Figure S1 shows finite element method (FEM) results of the first, second, and third eigenmodes of

the qPlus sensors with the probe length of 1.4, 1.7, and 2.0 mm. The simulation was carried out with

the physical parameters listed in Table 1 using 3D CAD software (FreeCAD) as previously described1.

The shape of the eigenmodes obtained by the simulation was in good agreement with the theoretical

results shown in Fig. 4.

Fig. S1 The FEM results of the first, second, and third eigenmodes of the qPlus sensors with the probe length of 1.4,
1.7, and 2.0 mm.
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S3 Sensor charactarization

Figures S2a and S2b show thermal noise spectra of the qPlus sensor used in the experiment around its

f1 and f3 obtained at the sample temperature of 25◦C and 125◦C. We should note that the temperature

of the qPlus sensor was not certainly known when the sample temperature was 125◦C because the

sensor was not in contact with the heater but was mildly heated. Both eigenfrequencies are slightly

negatively shifted at the sample temperature of 125◦C because the eigenfrequency of QTFs varies

with temperature as an inverted parabola centered around 25◦C2,3. The sensitivities of the first and

third modes were determined from the thermal noise spectra obtained at 25◦C in the same way as

described in Sec. 3.1. The obtained sensitivities, Sv,1,v and Sv,3,l, were 84 µV pm−1 and 110 µV pm−1,

respectively. Note that the voltage signal shown in the spectra is 0.65 times lower than the total

voltage signal since the input impedance of the spectrum analyzer is 50 Ω and the output impedance

of the preamplifier, which is equal to that of OPA227, is 27 Ω.

Figures S2c and S2d show the transfer functions of the qPlus sensor around f1 and f3 at the sample

temperature of 125◦C. There is no "forest of peaks" in the amplitude components of the transfer

functions, which can cause instrumental artifacts in the detected signals.

Fig. S2 Thermal noise spectra around the first eigenfrequency (a) and third eigenfrequency (b) of the qPlus sensor
used in this experiment (l = 1.61 mm, lc = 0.17 mm). The spectra were taken at the sample temperature of 25◦C
(red points) and 125◦C (blue points). Transfer functions of the first mode (c) and third mode (d) of the qPlus sensor
measured at the sample temperature of 125◦C. The black and green lines show the normalized amplitude and phase
of the qPlus sensor.
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S4 Bimodal AFM results

Figure S3 shows the bimodal AFM images (topography, E1, A3, and φ3) obtained on the P(VDF-TrFE)

film at the sample temperature of 125 ◦C. Energy dissipation in the third mode E3 (shown in Fig. 10d

in the text) is derived from A3 and φ3 along with the equation given by4,

E3 =
πk3A2

3 fd

Q3

(
A3,0

A3
sin(−φ3)−

fd

f3

)
, (S8)

where fd, Q3, and A3,0 are the driving frequency, the quality factor, and the free amplitude of the third

mode.

The signals of the third mode, A3 and φ3, gradually drifted in the slow scan direction (y direction).

As a result, E3 also gradually changed in the same direction (shown in Fig. 10d in the text). It assumes

that the sensor was being heated during the imaging, which caused the shift of the eigenfrequencies

and the variation of the quality factors. It reproducibly occurs even after heating for 1 h before

approaching and keeping in the imaging condition for over 1 h. Thus, we compared E3 at the same y

position in the discussion in the text.

Fig. S3 The bimodal AFM results on the P(VDF-TrFE) film obtained at 125◦C under an ambient condition. (a)
Topography. (b) Energy dissipation in the first mode E1. (c) Amplitude of the third mode A3. (d) Phase of the third
mode φ3. The probe length l and the etched part length lc were 1.61 mm and 0.17 mm, respectively. f1 = 11.6 kHz,
Q1 = 1600, k1,v = 1.9 kN m−1, θ1 = 41.7◦, A1 = 118 pm, f3 = 142.6 kHz, Q3 = 550, k3,l = 58.6 kN m−1, θ3 = 6.3◦,
A3,0 = 386 pm. These images were taken at ∆ f1 =+3.5 Hz.
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Figure S4a shows the interaction stiffness in the third mode kint,3 derived from A3 and φ3 shown in

Figs. S3c and S3d. kint,3 was obtained by the equation shown below5,

kint,3 =
k3A3,0

Q3A3
cos(−φ3) . (S9)

kint,3 increased between the grains because of the topographic effects, which is the same as we already

pointed out about E3 in the text. Figure S4b shows a line profile of kint,3 on the black line in Figure

S4a. The short axis of the grains 1-4 indicated in the topographic image shown in Fig. S3a, which

corresponds to the molecular chain orientation, tilt 66◦, 84◦, -12◦, and -81◦ from the tip oscillation

direction at f3, respectively. The gray-colored zones in the line profiles (Fig. S4b) correspond to the

numbered grains. The line profile indicated the relationship of kint,3 between the numbered grains as

kgrain2(84◦)
int,3 ' kgrain4(−81◦)

int,3 > kgrain1(66◦)
int,3 > kgrain3(−12◦)

int,3 . The conservative tip-sample interactions detected

in the third mode kint,3 decreased when the tip oscillated parallel to the molecular chain orientation of

the P(VDF-TrFE); that is, the anisotropy of conservative lateral interactions on the P(VDF-TrFE) thin

film was also detected. This result indicated that the conservative lateral tip-sample interactions were

detected by the third mode of the qPlus sensor with a long probe.

Fig. S4 (a) Interaction stiffness in the third mode kint,3 calculated from A3 and φ3 shown in Figs. S3c and S3d, along
with Eq. S9. (b) Line profile of kint,3 on the black line in (a).
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