## **Electronic Supplementary Information**

Hydrothermal topotactic epitaxy of  $SrTiO_3$  on  $Bi_4Ti_3O_{12}$  nanoplatelets: understanding the interplay of lattice mismatch and supersaturation

Alja Čontala, Nina Daneu, Suraj Gupta, Matjaž Spreitzer, Anton Meden and Marjeta Maček Kržmanc<sup>\*</sup>

Table S1: Final concentrations (c) of reagents before hydrothermal reaction at 200 °C

| <b>C</b> Bi4Ti3O12 (mol/l) | Initial Sr/Ti ratio | CSrCl2x6H2O (mol/L) | C <sub>NaOH</sub> (mol/L) |
|----------------------------|---------------------|---------------------|---------------------------|
| 0.00102                    | 1:1                 | 0.00306             | 2 and 6                   |
|                            | 3:1                 | 0.00918             |                           |
|                            | 12:1                | 0.03672             |                           |
|                            | 24:1                | 0.07344             |                           |



**Figure S1:** (A-D) schematic presentation of the Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub>-to-SrTiO<sub>3</sub> transformation from the top and side view: (A)  $\Rightarrow$ initial Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> (BIT) platelets, (B, C) $\Rightarrow$ SrTiO<sub>3</sub>/Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> (STO/BIT) heterostructural platelets at different stages of the transformation, (D) SrTiO<sub>3</sub> (STO) platelets. (E-H) STEM micrographs of the (E, F) heterostructural SrTiO<sub>3</sub>/Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> (STO/BIT) platelets and (G,H) SrTiO<sub>3</sub> platelets from the top (E, G) and side view (F,H). The STEM micrographs, shown in E and F, and those presented in G and H, correspond to the to the transformation schematically presented at B and D, respectively.<sup>1</sup>



**Figure S2**: Cross-sectional HAADF-HR-STEM images of the  $Bi_4Ti_3O_{12}$  (BIT) platelet in the [110] orientation taken near the surface of the platelets with overlaid structural models: (a) As-prepared  $Bi_4Ti_3O_{12}$  (BIT) platelets, terminated by bismuth oxide  $[Bi_2O_2]^{2-}$  layer (the black rectangular denotes the unit cell of  $Bi_4Ti_3O_{12}$ ) and (b)  $Bi_4Ti_3O_{12}$  (BIT) platelets after exposure to hot NaOH (6 mol/L NaOH, holding time 1 hour at 200 °C), terminated by pseudoperovskite ( $[Bi_2Ti_3O_{10}]^{2-}$ ) blocks.



**Figure S3**: SEM micrographs (**a-c** secondary electron (SE) images) of the  $SrTiO_3/Bi_4Ti_3O_{12}$  platelets after 2.5 h at 200 °C at Sr/Ti=1 in 2 mol/l NaOH. Image (**d**) is backscattered (BSE) image of the image shown in (**b**).



**Figure S4**: SEM micrographs (SE images: **a,b,c** and BSE images: **d,e,f**) of the SrTiO<sub>3</sub>/Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> platelets after 2.5 h at 200 °C in 2 mol/l NaOH at various Sr/Ti ratios: (**a, d**) Sr/Ti=3, (**b, e**) Sr/Ti=12, (**c, f**) Sr/Ti=24.



**Figure S5**: Powder XRD patterns (2 $\theta$ : 10 °-70 °) of SrTiO<sub>3</sub>/Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> and SrTiO<sub>3</sub> reaction product after 2.5 h and 1 2h at 200 °C in 2 mol/L NaOH at different Sr/Ti ratios. The XRD patterns were indexed with JCPDS reference cards 01-074-1296 and 01-072-1019 for SrTiO<sub>3</sub> (STO) and Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> (BIT), respectively.



**Figure S6:** SEM micrographs of the SrTiO<sub>3</sub> structures and SrTiO<sub>3</sub>/Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> platelet after 12 h reaction at 200 °C in 2 mol/L NaOH and at different Sr/Ti ratios (**a-d**: SE images, **e-h**: corresponding BSE images).



**Figure S7**: Powder XRD patterns (20: 10 °-70 °) of SrTiO<sub>3</sub>/Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> and SrTiO<sub>3</sub> reaction product after 2.5 h and 12 h at 200 °C in 6 mol/L NaOH at different Sr/Ti ratios. The XRD patterns were indexed with JCPDS reference cards 01-074-1296 and 01-072-1019 for SrTiO<sub>3</sub> (STO) and Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> (BIT), respectively.



**Figure S8:** Graphical presentation of the  $SrTiO_3$  (STO) content in percentage after the reaction. The lines are added for visualisation; however, the reactions were performed only for Sr/Ti=1, 3, 12 and 24 molar ratios (the points denoted with squares). The black lines are for the reactions in 2 mol/L NaOH and the red lines are for the reactions in 6 mol/L NaOH. In both cases, dashed lines are for the reactions after 2.5 h and solid for the reactions after 12 h. All reactions were performed at 200 °C.

## References

 Maček Kržmanc, M.; Daneu, N.; Čontala, A.; Santra, S.; Kamal, K. M.; Likozar, B.; Spreitzer, M. SrTiO<sub>3</sub>/Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub>Nanoheterostructural Platelets Synthesized by Topotactic Epitaxy as Effective Noble-Metal-Free Photocatalysts for PH-Neutral Hydrogen Evolution. *ACS Appl. Mater. Interfaces* **2021**, *13* (1), 370–381. https://doi.org/10.1021/acsami.0c16253.