# Supporting Information

## Versatile assembly of metal sulfide supraparticles in aqueous

### phase

Menglei Wang, a,b Fulin Jia, b,c Jianxiao Gong,\*b and Yunsheng Xia\*a

#### Section 1. Calculation of Photothermal Conversion Efficiency.

1  $\square$  The photothermal conversion efficiency ( $\eta$ ) of different size Cu<sub>2</sub>S SPs was calculated as the following equation:

 $\eta = hS \left( T_{\text{max, SPs}} - T_{\text{max, solvent}} \right) / \left[ I \left( 1 - 10^{-A808} \right) \right]$  $= mc \left( T_{\text{max, SPs}} - T_{\text{max, solvent}} \right) / \left[ I \left( 1 - 10^{-A808} \right) \tau_s \right]$  $t = -\tau_s \text{ In}\theta$  $\theta = (T - T_{\text{surr}}) / (T_{\text{max, SPs}} - T_{\text{surr}})$ 

where *h* is the heat transfer coefficient, *S* is the irradiated area, *m* is the mass (1.0 g) and *C* is the heat capacity (4.2 J g<sup>-1</sup>) of the solvent, A<sub>808</sub> is the absorption of Cu<sub>2</sub>S SPs solutions (110  $\mu$ g mL<sup>-1</sup>),  $\tau$ s is calculated and shown in Figure S10. *T*<sub>max</sub>, sPs and *T*<sub>max</sub>, solvent are the highest temperature of the system and the surrounding, respectively. The detailed calculations were shown as follows:

$$\eta_{20 \text{ nm}} = 1 \times 4.2 \times (64.3 - 23.6) / [0.75 \times (1 - 10^{-0.488}) \times 380.69] \times 100\% = 88.7\%$$
  
$$\eta_{40 \text{ nm}} = 1 \times 4.2 \times (67.1 - 22) / [0.75 \times (1 - 10^{-0.915}) \times 428.29] \times 100\% = 67.1\%$$
  
$$\eta_{60 \text{ nm}} = 1 \times 4.2 \times (75.4 - 23.5) / [0.75 \times (1 - 10^{-1.185}) \times 430.57] \times 100\% = 72.2\%$$

2  $\square$  The photothermal conversion efficiency ( $\eta$ ) of Cu<sub>2</sub>S/Fe<sub>2</sub>O<sub>3</sub> SPs was calculated as follow equation:

$$\eta = hS \left( T_{\text{max, SPs}} - T_{\text{max, solvent}} \right) / \left[ I \left( 1 - 10^{-A1064} \right) \right]$$
$$= mc \left( T_{\text{max, SPs}} - T_{\text{max, solvent}} \right) / \left[ I \left( 1 - 10^{-A1064} \right) \tau_s \right]$$
$$t = -\tau_s \ln\theta$$
$$\theta = (T - T_{\text{surr}}) / (T_{\text{max, SPs}} - T_{\text{surr}})$$

where *h* is the heat transfer coefficient, *S* is the irradiated area, *m* is the mass (1.0 g) and *C* is the heat capacity (4.2 J g<sup>-1</sup>) of the solvent, A<sub>1064</sub> is the absorption of Cu<sub>2</sub>S/Fe<sub>2</sub>O<sub>3</sub> SPs solutions (50 µg mL<sup>-1</sup>),  $\tau_s$  is calculated and shown in Figure S11. *T*<sub>max</sub>, sPs and *T*<sub>max</sub>, solvent are the highest temperature of the system and the surrounding, respectively. The detailed calculations were shown as follows:

$$\eta_{\rm sp} = 1 \times 4.2 \times (55 - 30) / [1 \times (1 - 10^{-0.75}) \times 282.417] \times 100\% = 45.2\%$$

#### Section 2. Calculation of crystal domain size.

| pattern           | 2θ (°) | FWHM (°) |
|-------------------|--------|----------|
| CdS, 4.82 nm      | 43.28  | 1.86     |
| $Cu_2S$ , 6.56 nm | 48.84  | 1.39     |
| ZnS, 3.67 nm      | 43.60  | 2.43     |

Table 1 Calculation of crystal domain size

The relationship between domain size and FWHM is based on the Debye-Scherrer expression according to which: domain size in nm =  $0.94*\lambda_X/(\cos\theta*FWHM$  in radian) where  $\lambda_X$  is Cu Ka X-ray radiation wavelength of 0.154 nm.



Figure S1. SEM image of the precursor compounds cysteine-Cd<sup>2+</sup> before NaOH was added.



Figure S2. TEM image of the precursor compounds cysteine-Cd<sup>2+</sup>after NaOH was added.



Figure S3. The elemental distribution mapping images of the precursors compound cysteine-Cd<sup>2+</sup>after NaOH was added.



Figure S4. The plot of the  $\zeta$ -potential values of the CdS SPs vs. reflux time.



Figure S5. The self-assembly process of Cu<sub>2</sub>S SPs. (A) The TEM images of the precursor compound cysteine-Cu<sup>+</sup> before NaOH was added (the inset is the photo picture of the corresponding reaction solution). (B) The TEM images of the products fabricated at 1 h. (C) The TEM images of the products fabricated at 5 h. (D) The TEM images of the products fabricated at 12 h.



Figure S6. The plot of the  $\zeta$ -potential values of the different ratios of cysteine and Cd<sup>+</sup>.



Figure S7. Extinction spectra of CdS SPs.



Figure S8. CD spectra of D-cysteine and L-cysteine.



Figure S9. The linear relationship between concentration and extinction intensity of Cu<sub>2-x</sub>S SPs.



Figure S10. The linear diagrams of dimensionless driving factors and time for  $Cu_{2-X}S$  SPs in the cooling process respectively.



Figure S11. (A) The linear relationship between material concentration and extinction intensity at 1064 nm of  $Cu_{2-x}S/Fe_2O_3$  SPs. (B) The temperature changes of  $Cu_{2-x}S/Fe_2O_3$  SPs before and after laser irradiation at 1064 nm and 1.0 W cm<sup>-2</sup> followed by natural cooling after the laser was turned off. (C) Linear diagrams of dimensionless driving factors and time for materials in the cooling process respectively.



Figure S12. FT-IR spectra of Cu<sub>2</sub>S/Fe<sub>2</sub>O<sub>3</sub> SPs SPs