Supporting Information

Zero-strain strategy incorporating TaC with Ta_2O_5 to enhance its rate capacity for long-term lithium storage

Yinhong Gao, Xu Nan, Bing Sun, Wenli Xu, Qiang Huang, Ye Cong, Yanjun Li, Xuanke Li, and

Qin Zhang*

Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081, China

*Corresponding authors.

E-mail address: zhangqin627@wust.edu.cn; lixuanke@wust.edu.cn;

Li⁺ Diffusion coefficient (D_{2Li}) calculated by EIS:

$$D_{2\rm Li} = R^2 T^2 / 2A^2 n^4 F^4 C^2 \sigma^2$$

where R is the gas constant, T is the absolute temperature, A is the surface area of the anode electrode, n is the number of electrons per molecule during oxidization, F is the Faraday constant, C is the ion concentration, σ is Warburg parameter.

Fig. S1 (a) XRD pattern, and (b) SEM images of amorphous Ta₂O₅@PF hybrid nanospheres.

Fig. S2 (a) SEM, (b) TEM, and (c) HRTEM images of Ta_2O_5 . (d) SEM, (e) TEM, and (f) HRTEM images of TaC.

Fig. S3 a) XRD patterns of Ta_2O_5/TaC .

Fig. S4 CV curves of the a) Ta_2O_5 , b) Ta_2O_5/TaC , and c) TaC anode at a scan speed of 0.2 mV s⁻¹ for 5 consecutive cycles.

Fig. S5 The discharge/charge profiles of Ta_2O_5/TaC during the first ten cycles.

Fig. S6 The calculated D_{1Li+} from GITT curves of a) Ta₂O₅, b) TaC

Fig. S7 Nyquist plots of Ta_2O_5/TaC anode in charging state for 50^{th} and 100^{th} cycles as well as before cycling.

Fig. S8 a) 3D plot of selected in situ XRD patterns in the 2-theta range of $40.01 \approx 40.98^{\circ}$. b) The change of lattice parameters for TaC during the initial two cycles.

Fig. S9 Representative *in-situ* XRD patterns of Ta_2O_5/TaC in situ cell with Rietveld refinements at (a) 0.01 V (the end of second discharge) and (b) 3.0 V (the end of second charge). The peak at ~ 38.7° originates from the Be window (see Fig. 5a), and was deleted during the refinement process.

Fig. S10 (a) Low magnification FESEM image, and (b) TEM image of the Ta_2O_5/TaC electrode after 50 cycles. High-resolution XPS spectra of (c) C 1s, (d) O 1s (e) Li 1s, and (f) F 1s for Ta_2O_5/TaC electrode after being charged to 3 V.

	Ta ₂ O ₅	Ta ₂ O ₅ /TaC	TaC
Charge D _{1Li}	1.38×10^{-11}	2.26 × 10 ⁻¹¹	2.05×10^{-11}
Discharge D _{1Li}	9.54 × 10 ⁻¹²	1.64 × 10 ⁻¹¹	1.61×10^{-11}

Table. **S1** The calculated average D_{1Li} values

Table. **S2** Summary of R_s and R_{ct} calculated from EIS of Ta₂O₅, Ta₂O₅/TaC, and TaC anode.

	Ta ₂ O ₅	Ta ₂ O ₅ /TaC	TaC
<i>R</i> _s (Ω)	8.2	3.7	7.2
$R_{\rm ct}$ (Ω)	400.0	351.8	255.4