Improved water splitting efficiency of Au-NP-loaded Ga₂O₃ thin films in the visible region under strong coupling conditions

Yaguang Wang, ^a Xu Shi, ^b Tomoya Oshikiri, ^{a,c} Hiroaki Misawa ^{a,d*}

^a Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan.

^b Creative Research Institution, Hokkaido University, Sapporo, Japan.

^c Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan.

^d Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Taiwan.

Corresponding Author

(* E-mail: misawa@es.hokudai.ac.jp)

Supplmentary Data

Fig. S1 Schematic of TAGA fabrication

Fig. S2 (a) XRD of Ga₂O₃ film on TiN/Au-film. (b) Top-view SEM image of the Au-NPs on Ga₂O₃ and the size analysis by ImageJ.

Fig. S3 (a) Reflectance spectra of Au film on SiO₂ with and without TiN film. (b) I-V curves of Au-NPs/Ga₂O₃/Au-film with and without TiN measured under dark conditions.

When Ga₂O₃ was deposited directly on the Au film, poor semiconductor properties of Ga₂O₃ film on Au-film were observed, as shown by the black line in Fig. S3b. After the addition of the TiN layer, the resulting I-V curve showed obvious semiconductor characteristics with a very low dark current under a positive potential. The current of Au-NPs/Ga₂O₃/TiN/Au-film generated at a negative potential range under dark conditions indicated a better electron transfer due to the superior semiconductor properties of Ga₂O₃ film on TiN/Au-film.

 $\label{eq:Ga2O3} \mbox{Fig. S4} \mbox{ Reflection spectra of Ga2O3/TiN/Au-film with different thicknesses of Ga2O3 film. Corresponding colorful arrows mark the cavity modes.}$

Fig. S5 (a) Absorption spectra of TAG. The thickness of TiO_2 was 4 nm.

When the Ga_2O_3 film was deposited on sapphire, only the LSPR mode existed in the structure of $TiO_2/Au-NPs/Ga_2O_3/sapphire$ (TAG) without a cavity mode because of the similar refractive index between Ga_2O_3 (n=1.90) and sapphire (n=1.77).

Fig. S6 Spectral separation of the absorption spectrum of TAGA with a tuning structure by Lorentz fitting.

Fig. S7 (a) I-t curve of TAGA under 600 nm irradiation. A bias potential was applied as + 0.3 V vs. SCE. (b) I-V curve of TAGA samples measured in 0.1 mol/L KOH solution under dark conditions and 600 nm irradiation.

Fig. S8 (a) Experimental extinction spectra of TAG and Au-NPs/Ga₂O₃/sapphire. (b) FDTD simulation of extinction spectra of TAG and Au-NPs/Ga₂O₃/sapphire. The thickness of Ga₂O₃ was 210 nm.

Fig. S9 IPCE of TAG measured in 0.1 mol/L KOH solution. The applied bias potential was + 0.3 V vs. SCE.

Fig. S10 FDTD simulation of the near-field spectra at the interface of the Au-NPs/Ga₂O₃ in AGA and TAG. The monitor position (black line) is 1 nm above the Au-NPs/Ga₂O₃ interface.

Fig. S11 Top-view SEM images and the size analysis of the Au-NPs on TAGA (a) before and (b) after 6 h irradiation under visible light; (c) Absorption spectra of TAGA before and after 6 h irradiation under visible light;
(d) Absorbance spectra of TiO(tpypH₄)⁴⁺ solution after the addition of electrolyte for O₂ evolution using TAGA photoanode under visible light. The legend indicates the irradiation time.

Fig. S11a and b showed the SEM image of Au-NPs and surface morphology on TAGA and the analyzed particle distribution before and after irradiation. No apparent differences in surface morphology and particle size distribution were observed. In addition, after 6 h irradiation under visible light, the absorption spectra of TAGA shown in Fig. S11c were almost the same before and after irradiation, indicating that no self-oxidation of the photoanode occurred during the measurement.

Since no sacrificial electron donor or acceptor was used in our experiment, the main possible side reaction product is H_2O_2 , as reported in our previous paper.¹ To examine this possible side reaction product of H_2O_2 , as shown in Fig. S11d, a spectrophotometric analysis using a Tiporphyrin reagent was applied to detect the formation of H_2O_2 during water oxidation.² TiO(tpypH₄)⁴⁺ solution (5.0×10⁻⁵ mol/L) was prepared by dissolving [Oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium(IV)] in hydrochloric acid solution. During the measurement, 100 µL electrolyte for O₂ evolution using TAGA after different irradiation time was added into 300 µL TiO(tpypH₄)⁴⁺ solution. However, according to the absorbance result in Fig. S11d, no H₂O₂ was detected after irradiation. It meant this side reaction did not occur during water oxidation.

Fig. S12 Photocurrent density of TAGA under the same experimental condition for oxygen evolution.

Reference

1. Y. Nishijima, K. Ueno, Y. Kotake, K. Murakoshi, H. Inoue and H. Misawa, *J. Phys. Chem. Lett.*, 2012, **3**, 1248-1252.

2. C. Matsubara, N. Kawamoto and K. Takamura, Analyst, 1992, 117, 1781-1784.