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Supplement information 

 

Tables 

Table S1 Overview of publications on bacterial detection/targeting (information are obtained from 
www.webofknowledge.com - Key words: imprint* polymer*, bacteria) – imprinting of whole bacteria 

  Whole bacteria imprinting 

Bacteria Year Method Detection Ref. 

Staphylococcus aureus 2020 Bulk polymerization Fluorescence microscopy [1] 

Escherichia coli 2020 Microcontact imprinting  SPR [2] 

Escherichia coli 2020 Bulk polymerization Fluorescence spectrometry [3] 

Acinetobacter baumannii 2020 Electropolymerization Impedance spectroscopy [4] 

Vibrio parahaemolyticus 2020 Microcontact imprinting  PCR/gel electrophoresis [5] 

Escherichia coli, 

Escherichia blattae 

2020 Microcontact imprinting  Pyroelectric detection [6] 

Escherichia coli 2019 Soft-lithography Thermal resistance [7] 

Escherichia coli 2019 Microcontact imprinting Time-dependent temperature 

measurement 

[8] 

Listeria Monocytogenes 2019 Pickering emulsion polymerization Fluorescence microscopy [9] 

Enterococcus faecalis 2019 Emulsion polymerization SPR [10] 

Escherichia coli 2019 Sol-gel imprinting Impedimetric [11] 

Escherichia coli 2019 Electropolymerization Impedimetric  [12] 

Escherichia coli 2018 Microcontact imprinting  Thermal [13] 

Escherichia coli 2018 Nanoimprint lithography Fluorescent microscopy [14] 

Escherichia coli, 

Listeria monocytogenes 

2018 Sol–gel imprinting Fluorescence spectrometry [15] 
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Escherichia coli 2017 Electropolymerization QCM [16] 

Escherichia coli 2017 Soft-lithography Thermal [17] 

Staphylococcus epidermidis 2017 Electropolymerization Impedimetric [18] 

Escherichia coli 2017 Soft-lithography Heat-transfer method [19] 

Escherichia coli, 

Shewanella oneidensis, 

Staphylococcus aureus, 

Enterococcus faecium 

2017 Atomic transfer radical polymerization Single-cell force spectroscopy [20] 

Escherichia coli  2017 Bulk polymerization Cyclic voltammetry [21] 

Escherichia coli  2017 Microcontact imprinting  Cyclic voltammetry [22] 

Escherichia coli  2017 Nanoimprint lithography QCM [23] 

Escherichia coli, 

Staphylococcus aureus 

2016 Microcontact imprinting  Heat-transfer method [24] 

Escherichia coli 2016 Sedimentation/stamp imprinting QCM [25] 

Bacillus Cereus 2016 Sedimentation/stamp imprinting QCM [26] 

Rhodobacter sphaeroides 2015 Microcontact imprinting  Raman spectrometry [27] 

Escherichia coli 2015 Microcontact imprinting  SPR/QCM [28] 

Escherichia coli, 

Staphylococcus aureus 

2014 Imprinted shells Fluorescence microscopy [29] 

Methylomicrobium 

album, Methylosinus trichosporium 

2014 Stamp imprinting Fluorescence microscopy [30] 

Escherichia coli, Micrococcus luteus  2014 Pickering emulsion polymerization Fluorescence microscopy [31] 

Escherichia coli, 

Pseudomona aeruginosa, 

Bacillus subtilis, 

Staphylococcus aureus 

2014 Electropolymerization Dielectrophoresis [32] 

Mycobacterium tuberculosis 2013 Sedimentation imprinting Fluorescence microscopy [33] 

Bacillus subtilis 2013 Electropolymerization Impedimetric [34] 

Escherichia coli, 

Klebsiella pneumoniae, 

Staphylococcus aureus, 

Staphylococcus epidermidis 

2012 Soft lithography Confocal microscopy [35] 

Synechococcus elongatus  2012 Soft lithography Inverted microscopy [36] 

 
 
 

 

 



Table S2 Overview of publications on bacterial detection/targeting (information are obtained from 
www.webofknowledge.com - Key words: imprint* polymer*, bacteria) – imprinting of proteins or epitopes 

   Epitope/ Protein imprinting 

Bacteria Target Year Method Detection Ref. 

Mycobacterium leprae Peptide 2019 Electropolymerization QCM [37] 

Neisseria Meningitidis Peptide 2018 Bulk polymerization QCM [38] 

Staphylococcus aureus Surface protein 2016 Electropolymerization Cyclic voltammetry [39] 

Pseudomonas 
aeruginosa 

Lipopoly-saccharide 2016 Precipitate polymerization Fluorescence polarization [40] 

Staphylococcus aureus Surface protein 2009 Bulk polymerization UV spectrophotometry [41] 

 

 
Table S3 Summary of publications focused on the imprinted polymers of saccharides 

Saccharide Cell Year Ref. 

Sialic acid DU145 cell, PC3 cell, Jurkat cell 2015 [42] 

Glucuronic acid Human keratinocytes 2015 [43] 

Sialic acid, Fucose, Mannose HepG-2 cell, L-02 cell, MCF-7 cell, MCF-10A cell 2016 [44] 

Sialic acid DU 145 cell, HeLa cell 2017 [45] 

Hyaluronan, Sialic acid HaCaT cell 2017 [46] 

Hyaluronan HaCaT cell 2017 [47] 

Hyaluronic acid HaCaT cell 2018 [48] 

Hyaluronic acid HaCaT cell 2019 [46] 

Sialic acid, Fucose, Mannose HepG-2 cell, L-02 cell, MCF-10A cell, A-431 cell, HaCat cell, 

HK-2 cell, HeLa cell 

2017 [49] 

 

Results 

Dynamic light scattering (DLS) analysis was performed on nanoMIPs after 2 min sonication and 30 min vortexing. 
The data show a single peak, indicating an average hydrodynamic diameter of 55.56 ± 6.1 nm for Man nanoMIPs 
(a) and 111 ± 7.5 for GlcNAc nanoMIPs (b). 



 
Figure S1 DLS analysis of Man-nanoMIPs (a), GlcNAc-nanoMIPs (b). 



Flow cytometry analysis 
Different concentrations of GlcNAc-nanoMIPs (0.00015 - 0.40000 mg/mL) and Man-nanoMIPs (0.0125 - 0.40000 
mg/mL) were incubated respectively E.Coli (Figure S2) and D39_S. Pneumoniae (Figure S3). In the graphs 
reported below, the shift in the fluorescent signal indicates binding between fluorescent nanoMIPs and 
respectively E.Coli  or D39_S.Pneumoniae. Both bacteria were run without nanoMIPs and the autofluorescence 
subtracted. NanoMIPs imprinted for a small non-related compound were incubated with both bacteria and used 
as controls.  

Figure S2 Flow cytometry analysis of control E. Coli (no nanoMIPs), GlcNAc nanoMIPs (0.00015 – 0.40000 mg/mL) binding E. 
Coli; Man NanoMIPs (0.00125 – 0.4000 mg/mL) binding E.Coli and control nanoMIPs binding E.Coli 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure S3 Flow cytometry analysis of GlcNAc nanoMIPs (0.0006 – 0.4 mg/mL) binding S. Pneumoniae; Man NanoMIPs (0.006 – 
0.4 mg/mL) binding S. Pneumoniae; control nanoMIPs binding S. Pneumoniae; Control S. Pneumoniae (no nanoMIPs) 

Figure S4  (A) Image of Man-nanoMIPs by SEM; (B) image of GlcNAc-
nanoMIPs by SEM. 



Comparison of binding 
ConA was labelled with a fluorescent dye (Alexa 647) and binding between bacteria and ConA was assessed by 
using flow cytometry. From measured data (Fig S.4) it was observed that the amount of bound ConA was higher 
in the case of E. Coli. These data confirm that E. Coli bears higher amount of mannose molecule on their surface 
compared with S. Pneumoniae. 
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Figure S5 Binding of concanavalin A to gram-negative (red) and positive (blue) 
bacteria by flow cytometry. 
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