Defect Engineering of Two-dimensional Nb-based Oxynitrides for Visible-light-driven Water Splitting to Produce H_2 and O_2

Chang Xu,^[a] Yan Wang*,^[a] Quansheng Guo,^[b] and Xin Wang*^[a]

[a] C. Xu, Dr. Y. Wang, Prof. X. Wang

Shenzhen Institute of Advanced Technology

Chinese Academy of Sciences

Shenzhen 518055, China

E-mail: xin.wang2@siat.ac.cn

[b] Prof. Q. Guo

School of Materials Science and Engineering

Hubei University

Wuhan 430062, China

Figure S1. Crystal structure of LaKNaNbO₅.

Figure S2. Crystal structure of $LaNbON_2$ and $LaTaON_2$ with polyhedral and ball and stick model and the corresponding unit cell parameters.

Figure S3. The synthesis procedure scheme of $LaKNaNb_{1-x}Ta_xO_5$ oxide precursors and nitrided $LaKNaNb_{1-x}Ta_xO_5$ (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0).

Figure S4. TEM image (inset) of the layered LaKNaNb_{1-x}Ta_xO₅ heated at 873 K for 3 h and maintained at 773 K for 15 and corresponding electron diffraction pattern.

Figure S5. TEM image of the layered $LaKNaNb_{0.8}Ta_{0.2}O_5$ after nitridation at 1123 K for 4 h.

Figure S6. The EDS spectra of LaKNaNb $_{0.8}$ Ta $_{0.2}$ O $_5$ after nitridation at 1123 K for 4 h.

Figure S7. Valence band XPS spectra of (a) LaKNaNbO₅, (b) nitrided LaKNaNb_{0.8}Ta_{0.2}O₅, (c) nitrided LaKNaNb_{0.6}Ta_{0.4}O₅, (d) nitrided LaKNaNb_{0.4}Ta_{0.6}O₅, (e) nitrided LaKNaNb_{0.2}Ta_{0.8}O₅ and (f) nitrided LaKNaTaO₅.

Figure S8. XPS survey spectra of (a) LaKNaNb_{0.8}Ta_{0.2}O₅ and LaKNaNb_{0.8}Ta_{0.2}O₅ nitrided at 1123 K for 4 h.

Figure S9. High-resolution XPS spectra of O 1s for LaKNaNbO₅

Figure S10. High-resolution XPS spectra of O 1s for the nitrided LaKNaNbO₅ (a), the nitrided LaKNaNb_{0.8}Ta_{0.2}O₅ (b), the nitrided LaKNaNb_{0.6}Ta_{0.4}O₅ (c), the nitrided LaKNaNb_{0.4}Ta_{0.6}O₅ (d), the nitrided LaKNaNb_{0.2}Ta_{0.8}O₅ (e) and the nitrided LaKNaTaO₅ (f) nitrided at 1123 K for 4 h.

Figure S11. O_2 evolution rates for CoO_x modified the nitrided LaKNaNbO₅ treated at different temperature for 2 h.

Figure S12. XPS survey of fresh and used nitrided LaKNaNb_{0.8}Ta_{0.2}O₅ after photoreaction.

Figure S13. XPS Nb 3d (a), Ta 4f (b) and N 1s (c) of fresh and used nitrided $LaKNaNb_{0.8}Ta_{0.2}O_5$ after photoreaction.

Samples	Bandgap (eV)	VBE (eV)	CBE (eV)
LaKNaNbO ₅	1.77	1.50	-0.27
LaKNaNb _{0.8} Ta _{0.2} O ₅	1.84	1.49	-0.35
LaKNaNb _{0.6} Ta _{0.4} O ₅	1.86	1.47	-0.39
LaKNaNb _{0.4} Ta _{0.6} O ₅	1.89	1.45	-0.44
LaKNaNb _{0.2} Ta _{0.8} O ₅	1.96	1.42	-0.54
$LaKNaTaO_5$	2.12	1.45	-0.67

Table S1. The values of bandgap, VBE and CBE calculated from UV-vis DRSand VB-XPS spectra.

Samples		Nb 3d _{3/2}		Nb 3d _{5/2}			
•	Nb ⁵⁺ 3d _{3/2}	Nb ⁴⁺ 3d _{3/2}	Nb ³⁺ 3d _{3/2}	Nb ⁵⁺ 3d _{5/2}	Nb4+3d _{5/2}	Nb ³⁺ 3d _{5/2}	
LaKNaNbO ₅	8.51%	9.80%	15.59%	9.43%	25.69%	30.98%	
LaKNaNb _{0.8} Ta _{0.2} O ₅	4.37%	17.64%	12.62%	11.18%	24.67%	29.52%	
LaKNaNb _{0.6} Ta _{0.4} O ₅	13.78%	11.23%	21.35%	11.13%	23.25%	19.25%	
LaKNaNb _{0.4} Ta _{0.6} O ₅	15.41%	15.21%	11.37%	17.88%	20.92%	19.21%	
LaKNaNb _{0.2} Ta _{0.8} O ₅	26.98%	12.48%	9.14%	24.41%	15.75%	11.24%	
LaKNaTaO₅	0	0	0	0	0	0	

Table S2. Fractions of Nb species obtained from the XPS Nb 3d deconvolutionregions for the nitrided LaKNaNb_{1-x}Ta_xO₅.

	Та	4f _{5/2}	Ta 4f _{7/2}		
Samples	Ta ⁵⁺ 4f _{5/2}	Ta ⁴⁺ 4f _{5/2}	Ta⁵+ 4f	Ta ⁴⁺ 4f _{7/2}	
	0	0	7/2	0	
Latinando 5	11 32%	32 58%	17.06%	29 14%	
Larmand _{0.8} $a_{0.2}O_5$	12.20%	32.36%	0/ 020/	20.220/	
Lakinand _{0.6} Ta $_{0.4}$ O ₅	12.39%	30.93%	24.33%	32.33%	
Lakinand _{0.4} Ta _{0.6} O_5	19.06%	27.70%	24.30%	20.00%	
Lakinand _{0.2} $a_{0.8}$ U ₅	23.56%	22.22%	28.71%	25.51%	
Lakna laO ₅	33.39%	11.92%	40.76%	13.92%	

Table S3. Fractions of Ta species obtained from the XPS Ta 4f deconvolutionregions for the nitrided LaKNaNb_{1-x}Ta_xO₅.

Samples	Area (O_L)	Area (O_V)	Area (O _{H2O})
LaKNaNbO ₅	47.67%	43.27%	9.06%
LaKNaNb _{0.8} Ta _{0.2} O ₅	53.45%	39.00%	7.55%
LaKNaNb _{0.6} Ta _{0.4} O ₅	54.81%	37.48%	7.71%
LaKNaNb _{0.4} Ta _{0.6} O ₅	57.07%	30.51%	12.42%
LaKNaNb _{0.2} Ta _{0.8} O ₅	59.72%	25.03%	15.25%
LaKNaTaO₅	65.88%	20.75%	13.37%

Table S4. Fractions of O species obtained from the XPS O1s deconvolutionregions for the nitrided LaKNaNb_{1-x}Ta_xO₅.

Table S5. Photocatalytic H_2 and O_2 evolution rates over the nitrided LaKNaNb₁₋ ${}_xTa_xO_5$ at 1123 K for 4 h.

Samples	H ₂ evolution rate	O ₂ evolution rate		
LaKNaNbO ₅	0.2635 umol/h	18.6485 umol/h		
LaKNaNb _{0.8} Ta _{0.2} O ₅	1.4836 umol/h	22.8087 umol/h		
LaKNaNb _{0.6} Ta _{0.4} O ₅	3.3684 umol/h	14.9002 umol/h		
LaKNaNb _{0.4} Ta _{0.6} O ₅	4.7403 umol/h	5.9927 umol/h		
LaKNaNb _{0.2} Ta _{0.8} O ₅	6.9226 umol/h	2.6307 umol/h		
LaKNaTaO₅	19.3713 umol/h	0.4457 umol/h		

	Name	Peak	Height	FWHM	Area (P)	Atomia %	Peak Type
		BE	CPS	eV	CPS.eV	Alomic %	
Fresh	C 1s	284.8	25911.8	2.66	100441	61.41	Standard
	N 1s	394.91	16502.7	1.01	60060	23.58	Standard
	Nb 3d	205.59	39381.6	3.03	177463	10.97	Standard
	Ta 4f	24.83	12381.2	3.49	69693.1	4.03	Standard
Used	Nomo	Peak	Height	FWHM	Area (P)	Atomic %	Poak Typo
	Name	BE	CPS	eV	CPS.eV		геак туре
	C 1s	284.8	19785.4	2.56	89630	63.49	Standard
	N 1s	395.2	15287.4	1.07	46031.9	20.94	Standard
	Nb 3d	205.72	36628.6	2.71	163111	11.69	Standard
	Ta 4f	25.12	8925.04	3.61	58018.3	3.88	Standard

Table S6. The XPS peak contents of nitride $LaKNaTa_{0.8}Nb_{0.2}O_5$ before and

after 15 hours reaction.