Supplementary Information

Role of graphene quantum dots with discrete band gap on SnO₂

nanodomes for NO₂ gas sensors with an ultralow detection limit

Jinho Lee,^{‡a} Minsu Park,^{‡b} Young Geun Song,^c Donghwi Cho,^d Kwangjae Lee,^e Young-Seok Shim,^{*f} Seokwoo Jeon,^{*a,g}

^a Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

^b Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA

- ^c Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02791, Republic of Korea
- ^d Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 34114, Republic of Korea
- e Department of Information Security Engineering, Sangmyung University, Cheonan 31066, Republic of Korea

^f School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education, Cheonan, 31253,

Republic of Korea

^g Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea

* Corresponding authors.

E-mail addresses: ysshim@silla.ac.kr (Y.S. Shim), jeon39@kaist.ac.kr (S. Jeon).

‡ These authors contributed equally to this work.

Experimental section

Fabrication of GQD@SnO₂ nanodomes

Pt/Ti (thickness of 150 nm/30 nm) interdigitated electrode patterns (IDEs) consisting of 20 electrodes with 5 μ m gap were fabricated on a SiO₂/Si substrate (thickness of 300 nm/550 μ m). Nanodome-like structures were fabricated by the soft-templating method ¹. The polystyrene (PS) beads (700 nm, 5.0 wt%, Spherotech, USA) were dispersed in a water:ethanol = 1:1 (v:v) solution by a centrifuge process after the concentration reached 10 wt%. The PS bead solution was pipetted onto a glass slide positioned at an angle of 45° in a Petri dish with deionized water. The Pt/Ti IDEs patterned substrate and slide glass were treated by O₂-plasma treatment (CUTEMP, femtoscience) for 10 minutes before fabrication. The pipetted solution was dispersed onto the surface of deionized water and allowed to form a PS bead monolayer. The Pt/Ti IDEs patterned substrate were dipped into water and the PS bead monolayer was pulled out and dried at room temperature for 24 hours. SnO₂ was deposited onto the PS bead and a rate of 1 Å s⁻¹. The deposited SnO₂ were annealed at 500 °C for 1 hour to simultaneously remove the PS templates and crystallize the SnO₂ nanodomes.

The GQDs were prepared from graphite intercalation compounds (GICs) through a previous method ². First, graphite and potassium sodium tartrate (KNaC₄H₄O₆·4H₂O) were vigorously mixed at a ratio of 1:15 (w:w) and then ground. The mixture was heated in a heating mantle at 250 °C for 24 hours, which led to the formation of GICs. The as-prepared GICs were immersed in DI water and sonicated to exfoliate and cut the graphite. The crude GQD solution was filtered using centrifugal microfilters (10,000 NMWL, Amicon Ultra-15), followed by dialysis using a dialysis membrane for 3 days to remove any impurities and obtain pure GQDs <5 nm in size.

The GQD solution (0.1 mg ml⁻¹) was repeatably drop cast (total 100 μ l) onto SnO₂ nanodomes and allowed to dry at room temperature for 24 hours.

Characterization and gas response measurements

The morphology of the GQD@SnO₂ nanodomes was investigated by field-emission scanning electron microscopy (FE-SEM, SU 5000, Hitachi). The structures and fast Fourier transform (FFT) images of GQDs were investigated by transmission electron microscopy (TEM, Tecnai F20, FEI Company). The crystallinity of the sensors was measured by X-ray diffraction (XRD, Ultima IV, RIGAKU) with a Cu-K α radiation source (wavelength 1.5418 Å). The chemical bonding and binding energies of the sensor materials were investigated by X-ray photoelectron spectroscopy (XPS) using a K-alpha system (Thermo VG Scientific) with an Al-K α X-ray source. The surface charging effect was corrected with C 1s peak at 284.7 eV as a reference. The Raman spectra were collected by Senterra system (Bruker) with 532 nm laser. The samples for XPS analysis and Raman analysis were prepared by annealing for 1 hour on a hot plate at room temperature, 50 °C, 100 °C, and 150 °C. The oxygen content in the GQDs was estimated using Auger electron spectroscopy (AES) with a source electron beam energy of >10 kV.

The responses of target gases were measured in a quartz tube with a 1-inch furnace (Lindberg, blue M). The operating temperature was controlled by a 1-inch furnace at room temperature, 50 °C, 100 °C, and 150 °C to evaluate the gas response mechanism at different operating temperatures. The gas flows were controlled to give a constant flow rate of 1000 sccm under dry condition (RH 0) using a mass-flow controller. The sensor resistance was measured using a Keithley 2401 instrument with a DC bias voltage of 0.5 V.

Supplementary Figures

Fig. S1. Size distribution of pristine GQDs. <D> indicates average size.

Fig. S2. Spectrum of magnified Auger electron spectroscopy (AES) for GQDs.

Fig. S3. HR-TEM image of individual SnO₂ nanodomes.

Fig. S4. Resistance curves for 5 ppm NO_2 as a function of operating temperature for a $GQD@SnO_2$ nanodomes under humid condition (relative humidity: 50 %).

Fig. S5. I-V curve of SnO₂ nanodomes and GQD@SnO₂ nanodomes

Fig. S6. Raman spectrum of the GQDs@SnO₂ nanodomes.

Year	Material	Temp. (°C)	$t_{\rm res}^{\rm g)}/t_{\rm rec}^{\rm h}$ (s)	Response	– LOD ⁱ⁾ (ppb)	Refs.
				$((R_a - R_g)/R_g)$ or $(R_g - R_a)/R_a)$		
2022	GQD@SnO2 nanodomes	150	322/105	39.1 (5 ppm)	1.1	This work
2021	N-GQDs ^{a)} -SnO ₂ hollow cube	130	59/33	417 (1 ppm)	-	3
2021	GQD-metal phthalocyanine hybrid	RT	100/100	15.8 (50 ppm)	50	4
2020	N-GD ^{b)} -SnO ₂ -0D heterostructure	50	528/384	4336 (100 ppb)	20	5
2020	N-GQDs-3D ordered macroporous In ₂ O ₃	100	95/36	81.7 (1 ppm)	100	6
2020	BiVO ₄ /Cu ₂ O/rGO ^{c)}	60	51.3/87.5	8.1 (1 ppm)	-	7
2020	CuWO ₄ /rGO	RT	38/22	9.45 (50 ppm)	500	8
2019	rGO/ZnO-CT ^{d)}	RT	140/630	1.15 (15 ppm)	43.5	9
2018	rGO-Co ₃ O ₄	RT	90/2400	1.27 (5 ppm)	50	10
2018	CuO/rGO	RT	66/34	14 (1 ppm)	60	11
2018	WO ₃ /S-rGO ^{e)}	RT	6/56	2.50 (20 ppm)	-	12
2017	$SnO_2/N-RGO^{f)}$	RT	45/168	1.38 (5 ppm)	-	13
2017	rGO-In ₂ O ₃	RT	208/39	109 (1 ppm)	10	14
2016	ZnO/rGO	RT	75/132	2.19 (1 ppm)	50	15

Table S1. Comparison of gas sensing performance of GQDs/graphene-based gas sensors.

^{a)} nitrogen-doped graphene quantum dots; ^{b)} nitrogen-doped graphene dot; ^{c)} reduced graphene oxide; ^{d)} cotton thread; ^{e)} sulfonated reduced graphene oxide; ^{f)} nitrogen-doped reduced graphene oxide; ^{g)} response time; ^{h)} recovery time; ⁱ⁾ limit of detection

	Bare SnO ₂	nanodome	GQD@SnO ₂ nanodome		
	Response time (s)	Recovery time (s)	Response time (s)	Recovery time (s)	
RT	-	-	452	> 1500	
50 °C	-	-	450	> 1500	
100 °C	315	> 1500	459	1322	
150 °C	59	1247	322	105	

Table S2. Response/recovery times of bare SnO_2 and $GQD@SnO_2$ nanodome gas sensors at different operating temperatures.

References

- 1. C. Zhang, S. Cvetanovic and J. M. Pearce, *MethodsX*, 2017, 4, 229-242.
- 2. S. H. Song, M. H. Jang, J. Chung, S. H. Jin, B. H. Kim, S. H. Hur, S. Yoo, Y. H. Cho and S. Jeon, *Adv. Opt. Mater.*, 2014, **2**, 1016-1023.
- 3. Y. K. Lv, Y. Y. Li, H. C. Yao and Z. J. Li, *Sens. Actuators B Chem.*, 2021, **339**, 129882.
- 4. W. Jiang, X. Chen, T. Wang, B. Li, M. Zeng, J. Yang, N. Hu, Y. Su, Z. Zhou and Z. Yang, *RSC Adv.*, 2021, **11**, 5618-5628.
- 5. R. Purbia, Y. M. Kwon, H.-D. Kim, Y. S. Lee, H. Shin and J. M. Baik, *J. Mater. Chem. A*, 2020, **8**, 11734-11742.
- Y.-K. Lv, Y.-Y. Li, R.-H. Zhou, Y.-P. Pan, H.-C. Yao and Z.-J. Li, *ACS Appl. Mater. Interfaces*, 2020, 12, 34245-34253.
- Q. Li, N. Han, K. Zhang, S. Bai, J. Guo, R. Luo, D. Li and A. Chen, *Sens. Actuators B Chem.*, 2020, 320, 128284.
- 8. W. Zhang, D. Zhang and Y. Zhang, *J. Mater. Sci. Mater.*, 2020, **31**, 6706-6715.
- W. Li, R. Chen, W. Qi, L. Cai, Y. Sun, M. Sun, C. Li, X. Yang, L. Xiang, D. Xie and T. Ren, ACS Sensors, 2019, 4, 2809-2818.
- 10. B. Zhang, M. Cheng, G. Liu, Y. Gao, L. Zhao, S. Li, Y. Wang, F. Liu, X. Liang, T. Zhang and G. Lu, *Sens. Actuators B Chem.*, 2018, **263**, 387-399.
- 11. Z. Li, Y. Liu, D. Guo, J. Guo and Y. Su, *Sens. Actuators B Chem.*, 2018, **271**, 306-310.
- 12. T. Wang, J. Hao, S. Zheng, Q. Sun, D. Zhang and Y. Wang, *Nano Res.*, 2018, **11**, 791-803.
- 13. Z. Wang, C. Zhao, T. Han, Y. Zhang, S. Liu, T. Fei, G. Lu and T. Zhang, *Sens. Actuators B Chem.*, 2017, **242**, 269-279.
- 14. J. Liu, S. Li, B. Zhang, Y. Wang, Y. Gao, X. Liang, Y. Wang and G. Lu, *J. Colloid Interface Sci.*, 2017, **504**, 206-213.
- 15. Y. Xia, J. Wang, J.-L. Xu, X. Li, D. Xie, L. Xiang and S. Komarneni, *ACS Appl. Mater. Interfaces*, 2016, **8**, 35454-35463.