SUPPORTING INFORMATION

Role of corrugated Dion-Jacobson 2D perovskite as additive in 3D MAPbBr $_{3}$ perovskite-based

light emitting diodes

C. T. Prontera, D. Taurino A. Coriolano, A. Maggiore, M. Pugliese, R. Giannuzzi, F. Mariano, S. Carallo,

A. Rizzo, G. Gigli, L. De Marco, V. Maiorano

Figure S1: SEM picture of MaPbBr₃ 3D perovskite

Figure S2: a) current density vs voltage curves for LED devices obtained with 3D, N12, N7, N5 and N3 thin films (0.5M); b) luminance vs voltage curves for LED devices obtained with 3D, N12, N7, N5 and N3 thin films (0.5M)

Table S1: Luminance, Current Efficiency and EQE of LED devices obtained with 3D, N12, N7, N5 and N3 thin films (0.5M)

	Lum. (cd/m²)	d/m²) CE (cd/A) EQE (%)	
3D	160 @ 8V	0.28 @ 8V	0.08 @ 8 V
N12	80 @ 8V	0.16 @ 8V	0.04 @ 8V
N7	80 @ 8V	0.22 @ 8V	0.07 @ 8V
N5	77 @ 8V	0.19 @ 8V	0.07 @ 8V
N3	24 @ 8V	0.10 @ 8V	0.03 @ 8V

Figure S3: PL spectra of the 3D/2D bilayer from the "front" and the "back"

REF	Perovskite structure	Device architecture	EQE (%)	Operational stability (T50)
1	BAB-FAPbl ₃ (BAB = 1,4- bis(aminomethyl)benzene)	ITO/ZnO/PEIE/perovskite/TFB/MoO ₃ /Al	5.2%	100 h
2	EDBE(MAPbBr ₃) _{n-1} PbBr ₄ (EDBE: 2,2-(ethylenedioxy)bis (ethylammonium))	ITO/PEDOT:PSS/perovskite/TPBi/LiF/AI	1.06	n.a.
3	PbBr ₂ :MABr:BDADBr (1,4- diaminobutane hydrobromide)	ITO/PEDOT:PSS/perovskite/TmPyPB/CsF/AI	1.1	3500 s
4	Pbl₂: Csl: MAI: mXDA (m- xylylenediamine)	ITO/ZnO/PEIE/perovskite/TFB/MoO ₃ /Ag	12%	n.a.

5	BDAFA _{n-1} PbnI _{3n+1} (BAD = 1,4- butanediamine)	ITO/ZnO/PEIE/perovskite/TFB/MoO ₃ /Au	9	189.4 h
6	DPDA-CsPb(Br/Cl) ₃ (DPDA = N,Ndimethyl-1,3- propanediamine)	ITO)/modified-(PEDOT:PSS)/perovskites/TPBi)/ (Liq)/aluminum (Al)	2.65	n.a.
7	(PDMA)FA ₂ Pb ₃ X ₁₀ (PDMA = p- xylylenediamine)	ITO/ZnO/PEIE/perovskite/TFB/MoO ₃ /Au	7.1	n.a.
This work	MAPbBr ₃ / α (DMEN)PbBr ₄ (α (DMEN) = (dimethylamino)ethylamine)	ITO/PEDOT:PSS/perovskite/BPhen/BPhen:Cs/Ag	0.27	1400 s

T50 = time that the device takes for the luminance to drop to half its initial value during constant applied voltage

- 1 Y. Shang, Y. Liao, Q. Wei, Z. Wang, B. Xiang, Y. Ke, W. Liu and Z. Ning, *Sci. Adv.*, 2019, **5**, 1–9.
- 2 C. H. Chen, Z. Li, Q. Xue, Y. A. Su, C. C. Lee, H. L. Yip, W. C. Chen and C. C. Chueh, *Org. Electron.*, , DOI:10.1016/j.orgel.2019.105400.
- 3 L. He, Z. Xiao, X. Yang, Y. Wu, Y. Lian, X. Peng and X. Yang, J. Mater. Sci., 2020, 55, 7691–7701.
- 4 Y. Xu, W. Xu, Z. Hu, J. A. Steele, Y. Wang, R. Zhang, G. Zheng, X. Li, H. Wang, X. Zhang, E. Solano, M. B. J. Roeffaers, K. Uvdal, J. Qing, W. Zhang and F. Gao, *J. Phys. Chem. Lett.*, 2021, **12**, 5836–5843.
- 5 K. H. Ngai, Q. Wei, Z. Chen, X. Guo, M. Qin, F. Xie, C. C. S. Chan, G. Xing, X. Lu, J. Chen, K. S. Wong, J. Xu and M. Long, *Adv. Opt. Mater.*, 2021, **9**, 1–10.
- 6 Y. Liu, L. K. Ono, G. Tong, T. Bu, H. Zhang, C. Ding, W. Zhang and Y. Qi, *J. Am. Chem. Soc.*, 2021, **143**, 19711–19718.
- 7 H. Yang, J. Tang, L. Deng, Z. Liu, X. Yang, Z. Huang, H. Yu, K. Wang and J. Li, *Phys. Chem. Chem. Phys.*, 2022, **24**, 7969–7977.