Supporting Information

Ultrafast growth of submillimeter-scale single-crystal MoSe₂ by pre-alloying CVD

Xing Xin,^{‡a,b} Jiamei Chen,^{‡a} Yanmei Zhang,^a Mao-Lin Chen,^c Youzhe Bao,^a Weizhen Liu,^a Yichun Liu,^a Haiyang Xu^{*a} and Wencai Ren^{*b,d}

^aCentre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.

^bShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, P. R. China.

^cState Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Optoelectronics, Shanxi University, Taiyuan 03006, China.

^dSchool of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China

E-mail: hyxu@nenu.edu.cn, wcren@imr.ac.cn

Figure S1. Schematic of (a) pre-alloying process for Au foils and (b) CVD process to grow large-scale monolayer MoSe₂ single crystals on pre-alloyed Au foils.

Figure S2. XPS spectra of elemental changes on Au foils. (a) The variation of Mo content in Au foils before and after pre-treatment with MoO₃. The XPS spectra of (b) Mo and (c) Se in the pre-alloyed Au foils detected after the MoSe₂ growth.

Au foils were pre-treated by H_2 reduction of MoO₃ to form pre-alloyed Au. Figure S2a shows that no Mo peak exists on the Au surface before pre-alloying. After pre-alloying, the peaks of 228.0 eV and 231.1 eV appear, which are consistent with Mo $3d_{5/2}$ and Mo $3d_{3/2}$ peaks, indicating the formation of Au-Mo alloys. Figure S2b and S2c exhibit that Mo $3d_{5/2}$ and $3d_{3/2}$ peaks are located at ~228.3 and 231.3 eV, while Se $3d_{5/2}$ and $3d_{3/2}$ peaks are located at ~54.2 and 54.9 eV, respectively, illustrating the formation of MoSe₂ on pre-alloyed Au foils. Mo in Au-Mo alloys or MoSe₂ can be distinguished by the position of Mo peaks in XPS spectra.

Figure S3. The SEM images of $MoSe_2$ (a) single crystals and (b) a continuous film. The blue arrow in (b) shows the naked Au area without $MoSe_2$. $MoSe_2$ film over a large area represents uniformly monolayer without any multilayer.

Figure S4. Optical images of MoSe₂ grown on the different areas (left, middle, right) of prealloyed Au foils with changing the distance (D) between Au foils and MoO₃ powders for (a-c) D = ~0 cm, (d-f) D = ~3 cm, and (g-i) D = ~6 cm. Au foils were pre-alloyed at 1050 °C for 4 times. The scale bars in all images are 100 µm.

We have explored morphology evolution of $MoSe_2$ with changing the distance (D) between Au foils and MoO_3 powders in Figure S4. When Au foil was very close to MoO_3 (D=0 cm, Figure S4a-c,) $MoSe_2$ domains join together to form a film and parallelogram-like MoO_2 also appeared. When D was increased to ~3 cm, the individual triangle $MoSe_2$ single crystals were obtained with the disappearance of MoO_2 flakes (Figure S4d-f). With further increasing D to ~6 cm (Figure S4g-i), $MoSe_2$ domains become smaller and a little irregular because of the insufficient Mo source supply. The above results indicate that the morphology of $MoSe_2$ depended on D due to the MoO_3 with point-like distribution.

However, in our experiments, the size of Au foils was 1 cm \times 1 cm. When D was fixed at 3 cm, the morphology of MoSe₂ on different areas of Au foils (left, middle, right) was very similar and MoSe₂ domains distribute on the whole Au surface uniformly.

Figure S5. Schematic diagram of the electrochemical bubbling method for transferring MoSe₂ single crystals and their films. Photographs of (a) MoSe₂/Au after spin-coated with PMMA, (b) the electrolysis process and (c) PMMA/MoSe₂ transferred onto the SiO₂/Si substrate.

Figure S6. The optical images of single-crystal $MoSe_2$ domains grown on the same pre-alloyed Au foil for different times. All the $MoSe_2$ domains show the similar morphology. Before the $MoSe_2$ growth, Au foil was pre-alloyed at 1050 °C for 20 times (see Experimental, Figure 1a). Scale bar in all images is 20 µm.

Figure S7. (a) Optical image of monolayer MoSe₂ film transferred on the SiO₂/Si substrate. (b) Raman and (c) PL spectra taken from 6 positions marked with different colors in (a), showing the characteristic peaks of monolayer MoSe₂. Considering that mapping a large area is very time-consuming, Raman and PL spectra were randomly taken in the MoSe₂ film.

Figure S8. Electrical properties of monolayer single-crystal MoSe₂. (a) Schematic diagram and (b) the optical image of the back-gate FET device based on the single-crystal MoSe₂ domain. (c) Output characteristic and (d) transfer characteristic of MoSe₂ FET device. The non-linear output characteristic in (c) presents a Schottky contact between the MoSe₂ and Au electrodes which may be caused by the inevitable contaminations during the fabrication of devices. The transfer characteristic in (d) indicates that as-grown MoSe₂ is a typical n-type semiconductor. The carrier mobility and ON/OFF ratio evaluated under V_{ds} of 0.1 V from (d) is 11.6 cm² V⁻¹ s⁻¹ and ~10³, respectively.

Figure S9. Optical images of $MoSe_2$ grown on the original Au foils under (a-c) different growth temperature and (d-f) different Se content. Scale bar in all images is 50 µm.

Figure S10. Au-Mo phase diagram.⁴¹

Figure S11. XPS spectra collected on the Au foils before and after MoSe₂ growth (Then MoSe₂ were totally transferred from Au foils). (a) At O Point, Mo content in Au increases after MoSe₂ growth, due to the formation of Au-Mo alloys along with the MoSe₂ growth on the pristine Au. (b) At M Point, the Mo content in the pre-alloyed Au remains unchanged because Mo was saturated at the MoSe₂ growth temperature (900 °C). (c) At S Point, the Mo content in the pre-alloyed Au is oversaturated at 900 °C. The excess Mo atoms diffuse onto the Au surface, so that the Mo content in pre-alloyed Au slightly decreases after MoSe₂ growth.

Figure S12. Optical images of $MoSe_2$ single crystals synthesized on pre-alloyed Au foils without MoO_3 precursor supply. The Au foil has been pre-alloyed for 25 times (see Experimental). The growth time in (a-f) varied from 0 to 12 min while keeping all the other parameters constant. We can see that the largest domains can be obtained within 2 min. The Mo content in the pre-alloyed Au is not enough to grow $MoSe_2$ for more than 10 min without the continuous Mo source supply.

Figure S12b and Figure 4a (the last figure) show MoSe₂ growth on pre-alloyed Au in 30 s without and with extra MoO₃ supply. Many small MoSe₂ nucleus (~4 μ m) were formed without MoO₃ supply because of precipitation of pre-deposited Mo (Figure S12b). However, MoSe₂ domains can be increased 27 times larger (107 μ m) after introducing extra MoO₃ supply (Figure 4a). The phenomenon proves that although the pre-deposited Mo can be act as Mo source for the MoSe₂ growth, it has a slight effect on promoting the grain size of MoSe₂. The main Mo source for MoSe₂ growth come from the extra MoO₃ powders but not pre-deposited Mo.

Figure S13. The SEM image of the cross section of pre-alloyed Au foil.

Figure S14. Raman spectra of $MoSe_2$ collected on Au foils with different Mo content corresponding to O Point, M Point and S Point in Figure 4c. The A_{1g} peaks at M and S Point have a blue shift than that at O Point, indicating a relative weak interaction between $MoSe_2$ and the pre-alloyed Au.

Figure S15. Optical images of $MoSe_2$ domains transferred from Au foils onto SiO_2/Si substrates. $MoSe_2$ domains were obtained on (a) the original Au without pre-alloying (O Point), the pre-alloyed Au at (b) M Point and (c) S Point. $MoSe_2$ domains were seriously damaged in (a), while the whole triangle was completely transferred in (b).

Figure S16. Optical images of $MoSe_2$ grown on pre-alloyed Au foils with different H_2 flow rate. Before the $MoSe_2$ growth, Au foils were pre-alloyed at 1050 °C for 5 times. Except for changing the H_2 flow rate, we kept all the other CVD parameters constant to eliminate the uncertain factors.

The grain size of monolayer $MoSe_2$ single crystals increases along with the H_2 concentration increasing from 0 to 3 sccm. Submillimeter-scale single-crystal $MoSe_2$ domain was achieved with a moderate H_2 flow of 3 sccm. Then after, grain size decreases and $MoSe_2$ multilayers appear at a higher H_2 flow rate.

Figure S17. (a) An optical image of ~450 μ m-sized MoS₂ single crystal grown by pre-alloying CVD. (b) MoS₂ transferred to the SiO₂/Si substrate by electrochemical bubbling method. (c) Raman and (d) PL spectra taken from the center and edge of single-crystal MoS₂ domain in (b).

Monolayer MoS_2 were obtained on pre-alloyed Au by changing the growth precursors. The 155 mg S powder (99.5 wt%) was separately heated to ~200 °C at the upstream of the pre-alloyed Au foil outside the furnace. The tube furnace was heated from room temperature to 750 °C within 20 min and then to 900 °C in 10 min under an Ar flow of 100 sccm. Then after, 3 sccm H₂ was turned on for 2 min.

Figure S17 shows that ~450 μ m-sized triangular MoS₂ was synthesized within 2 min, with a growth rate of ~3.75 μ m s⁻¹. Obviously, the value is much lower than the growth rate of MoSe₂ (~18.7 μ m s⁻¹). Although the growth mechanism is similar, the growth dynamics are different between MoS₂ and MoSe₂. In our previous reports, ¹³ we have have demonstrated that S₂ dimer dissociate into S atoms firstly and then S atoms diffuse to form WS₂. Such two processes need to overcome 0.22 eV barriers for S₂ dissociation and 0.58 eV barriers for S atom diffusion. By contrast, there exists only one process with a relatively smaller energy barrier (0.27 eV) for Se atoms diffusion to form WSe₂.²⁰ Therefore, the growth rate of MoSe₂ is higher than MoS₂.

Figure S18. Comparison of (a-c) WSe₂, (d-f) WS₂ and (g-i) WS_{2x}Se_{2(1-x)} obtained by normal and pre-alloying CVD. Figure c, f and i are the corresponding Raman spectra. Au foils were pre-alloyed at 1050 °C for 9 times. All scale bars are 100 μ m. WSe₂ was grown at 900 °C for 2 min with an Ar and H₂ flow of 100 and 3 sccm. WS₂ was grown at 850 °C for 5 min with an Ar and H₂ flow of 100 and 2 sccm. WS_{2x}Se_{2(1-x)} was obtained at 875 °C for 5 min with an Ar and H₂ flow of 120 and 3 sccm. The samples obtained by pre-alloying CVD have much lower nucleation density and larger grain size.

Material	Substrate	Temperature (°C)	Time	Size	Rate (µm/s)	Property	References
	SiO ₂ /Si	700	5 min	120 μm	0.40	—	1
	Sapphire	850	10 min	350 µm	0.58	μ=90 cm ² V ⁻¹ s ⁻¹ ON/OFF 10 ⁷	2
	SiO ₂ /Si	850	10 min	305 µm	0.51	μ=28 cm ² V ⁻¹ s ⁻¹ ON/OFF 10 ⁶	3
	SiO ₂ /Si	800	5 min	500 μm	1.67		4
	Sapphire	775	10 min	170 μm	0.28	$\mu=3 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$	5
MoS ₂	Anyone	750	10 min	200 µm	0.33	μ=90 cm ² V ⁻¹ s ⁻¹ ON/OFF 10 ⁷	6
	SiO ₂ /Si	770	15 min	500 µm	0.56	μ=48.7 cm ² V ⁻¹ s ⁻¹ ON/OFF 10 ⁷	7
	Au foil	680	60 min	50 µm	0.01	Tafel slope: 61 mV dec ⁻¹ J: 38.1 μA cm ⁻²	8
	Au foil	680	60 min	81 µm	0.02		9

Table S1. Comparison	of growth method	orain size of sir	ale-crystal TMDs
rable SI. Comparison	of growin memou	, grain size of sin	igie-crystal rivids.

	Au foil	680	60 min	115 µm	0.03	_	10
	Au foil	900	2 min	450 μm	3.75	_	Our work
	SiO ₂ /Si	750	5 min	178 μm	0.59	_	11
	Sapphire	900	60 min	135 µm	0.04	μ =4.1 cm ² V ⁻¹ s ⁻¹	12
	Au foil	800	4 h	600 µm	0.04	μ=2 cm ² V ⁻¹ s ⁻¹ ON/OFF 10 ⁷	13
WS ₂	Au foil	935	15 min	420 µm	0.47	μ =20 cm ² V ⁻¹ s ⁻¹ ON/OFF 10 ⁸	14
	SiO ₂ /Si	900	10 min	250 μm	0.42	μ =32.3 cm ² V ⁻¹ s ⁻¹	15
	SiO ₂ /Si	950	5 min	360 µm	1.20		4
	SiO ₂ /Si	1070	15 min	256 µm	0.28	μ =2.2 cm ² V ⁻¹ s ⁻¹	16
	Sapphire	850	15 min	50 µm	0.06	μ =90 cm ² V ⁻¹ s ⁻¹	17
WSe ₂	SiO ₂ /Si	720	30 min	168 μm	0.09	μ=100 cm ² V ⁻¹ s ⁻¹ ON/OFF 10 ⁷	18
	SiO ₂ /Si	900	20 min	800 µm	0.67	_	19
	Au foil	950	30 s	780 µm	26.00	μ =143 cm ² V ⁻¹ s ⁻¹	20

						ON/OFF 9*10 ⁶	
	SiO ₂ /Si	1050	10 min	570 μm	0.95	μ <0.1 cm ² V ⁻¹ s ⁻¹	21
	Quartz	850	20 min	100 µm	0.08	PL QY ~60%	22
	hBN	800	20 min	380 µm	0.32	μ =4.2 cm ² V ⁻¹ s ⁻¹	23
	SiO ₂ /Si	750	10 min	30 µm	0.05	_	24
	SiO ₂ /Si	820	15 min	40 µm	0.04	R=13 mA W ⁻¹	25
	SiO ₂ /Si	750	20 min	135 µm	0.11	μ =50 cm ² V ⁻¹ s ⁻¹ ON/OFF > 10 ⁶	26
	SiO ₂ /Si	750	10 min	50 µm	0.08	—	27
MoSe ₂	SiO ₂ /Si	750	20 min	1.3 mm	1.08	μ=42 cm ² V ⁻¹ s ⁻¹ ON/OFF 10 ⁶	19
	Molten glass	1050	5 min	2.5 mm	8.33	μ =95 cm ² V ⁻¹ s ⁻¹ ON/OFF > 10 ⁷	28
	SiO ₂ /Si Quartz	750	20 min	100 µm	0.08	_	29
	SiO ₂ /Si	730	15 min	195 µm	0.22		30
	SiO ₂ /Si	730	3 min	135 µm	0.75		31
	Au foil	900	30 s	560 µm	18.67	μ=11.6 cm ² V ⁻¹ s ⁻¹	Our work

Table S2. Comparison of single-crystal TMDs grown on Au.

Materials	Temperature (°C)	Time	Size	Rate (µm/s)	Property	References
	750	15 min	Monolayer parallelogram: 20 μm	0.02		32
ReSe ₂	750	15 min	_			33
	750	30 min	Monolayer: 30 µm	0.02		34
ReS ₂	800	5 min			$\mu=2.3 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ R=178.75 A W ⁻¹	35
PtTe ₂	800	10 min	5.6-50 nm Rectangular: 200 μm; triangular: 30 μm	Rectangular: 0.33 Triangular: 0.05	R=250 mA W ⁻¹	36
PtSe ₂	850	20 min	Irregular: 245 µm	0.20	Tafel slope: ~33 mV dec ⁻¹ J: ~215 μA cm ⁻²	37
TaSe ₂	930	5-25 min	Different thickness: 5-20 μm			38
TaS ₂	750	10 min	Different thickness: 20 µm	0.03	Tafel slope: 33-42 mV dec ⁻¹ J: 100-179 μA cm ⁻²	39
WS ₂	800	4 h	600 μm	0.04	$\mu=2 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ ON/OFF 10 ⁷	13

	935	15 min	420 μm	0.47	μ=20 cm ² V ⁻¹ s ⁻¹ ON/OFF 10 ⁸	14
WSe ₂	950	30 s	780 μm	26.00	$\mu = 143 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ ON/OFF 9*10 ⁶	20
	680	60 min	50 µm	0.01	Tafel slope: 61 mV dec ⁻¹ J: 38.1 μA cm ⁻²	8
	680	60 min	81 μm	0.02		9
MoS ₂	680	60 min	115 μm	0.03		10
	720	8 min	film	_	μ=11.2 cm ² V ⁻¹ s ⁻¹ ON/OFF 7.7*10 ⁵	40
	900	2 min	450 μm	3.75	—	Our work
MoSe ₂	900	30 s	560 μm	18.67	μ=11.6 cm ² V ⁻¹ s ⁻¹	Our work

References

- A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller and J. C. Hone, *Nat. Mater.*, 2013, 12, 554.
- W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang, X. Li, H. Yu, X. Zhu, R. Yang, D. Shi,
 X. Lin, J. Guo, X. Bai and G. Zhang, J. Am. Chem. Soc., 2015, 137, 15632.
- 3 J. Chen, W. Tang, B. Tian, B. Liu, X. Zhao, Y. Liu, T. Ren, W. Liu, D. Geng, H. Y. Jeong, H. S. Shin, W. Zhou and K. P. Loh, *Adv. Sci.*, 2016, **3**, 1500033.
- 4 J. Lee, S. Pak, P. Giraud, Y. W Lee, Y. Cho, J. Hong, A. R. Jang, H. S. Chung, W. K. Hong, H. Y. Jeong, H. S. Shin, L. G. Occhipinti, S. M. Morris, S. Cha, J. I. Sohn and J. M. Kim, *Adv. Mater.*, 2017, **29**, 1702206.
- 5 Y. F. Lim, K. Priyadarshi, F. Bussolotti, P. K. Gogoi, X. Cui, M.Yang, J. Pan, S. W. Tong, S. Wang, S. J. Pennycook, K. E. J. Goh, A. T. S. Wee, S. L. Wong and D. Chi, *ACS Nano*, 2018, **12**, 1339.
- 6 J. Zhu, H. Xu, G. Zou, W. Zhang, R. Chai, J. Choi, J. Wu, H. Liu, G. Shen and H. Fan, J. Am. Chem. Soc., 2019, 141, 5392.
- 7 X. Li, E. Kahn, G. Chen, X. Sang, J. Lei, D. Passarello, A. D. Oyedele, D. Zakhidov,
 K. W. Chen, Y. X. Chen, S. H. Hsieh, K. Fujisawa, R. R. Unocic, K. Xiao, A. Salleo,
 M. F. Toney, C. H. Chen, E. Kaxiras, M. Terrones, B. I. Yakobson and A. R. Harutyunyan, *ACS Nano*, 2020, 14, 6570.
- 8 J. Shi, D. Ma, G. F. Han, Y. Zhang, Q. Ji, T. Gao, J. Sun, X. Song, C. Li, Y. Zhang,
 X. Y. Lang, Y. Zhang and Z. Liu, *ACS Nano*, 2014, 8, 10196.
- 9 J. Shi, Y. Yang, Y. Zhang, D. Ma, W. Wei, Q. Ji, Y. Zhang, X. Song, T. Gao, C. Li,
 X. Bao, Z. Liu, Q. Fu and Y. Zhang, *Adv. Funct. Mater.*, 2015, 25, 842.
- 10J. Shi, X. Zhang, D. Ma, J. Zhu, Y. Zhang, Z. Guo, Y. Yao, Q. Ji, X. Song, Y. Zhang,C. Li, Z. Liu, W. Zhu and Y. Zhang, *ACS Nano*, 2015, 9, 4017.
- 11C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun and T. Yu, Adv. Opt. Mater., 2014, 2, 131.
- 12Q. Xu, Y. Zhang, S. Lin, C. Zheng, Y. L. Zhong, X. Xia, Z. Li, P. J. Sophia, M. S. Fuhrer, Y. B. Cheng and Q. Bao, *ACS Nano*, 2015, 9, 6178.
- 13Y. Gao, Z. Liu, D. M. Sun, L. Huang, L. P. Ma, L. C. Yin, T. Ma, Z. Zhang, X. L.Ma, L. M. Peng, H. M. Cheng and W. Ren, *Nat. Commun.*, 2015, 6, 8569.

- 14S. J. Yun, S. H. Chae, H. Kim, J. C. Park, J. H. Park, G. H. Han, J. S. Lee, S. M. Kim, H. M. Oh, J. Seok, M. S. Jeong, K. K. Kim and Y. H. Lee, *ACS Nano*, 2015, 9, 5510.
- 15Y. Yue, J. Chen, Y. Zhang, S. Ding, F. Zhao, Y. Wang, D. Zhang, R. Li, H. Dong, W. Hu, Y. Feng and W. Feng, ACS Appl. Mater. Interfaces, 2018, 10, 22435.
- 16L. Dong, Y. Wang, J. Sun, C. Pan, Q. Zhang, L. Gu, B. Wan, C. Song, F. Pan, C. Wang, Z. Tang and J. Zhang, 2D Mater., 2019, 6, 015007.
- 17 J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu and L. J. Li, *ACS Nano*, 2014, 8, 923.
- 18J. Chen, B. Liu, Y. Liu, W. Tang, C. T. Nai, L. Li, J. Zheng, L. Gao, Y. Zheng, H. S. Shin, H. Y. Jeong and K. P. Loh, *Adv. Mater.*, 2015, 27, 6722.
- 19Y. J. Gong, G. Ye, S, Lei, G. Shi, Y. He, J. Lin, X. Zhang, R. Vajtai, S. T. Pantelides, W. Zhou, B. Li and P. M. Ajayan, *Adv. Funct. Mater.*, 2016, 26, 2009.
- 20Y. Gao, Y. L. Hong, L. C.Yin, Z. Wu, Z. Yang, M. L.Chen, Z. Liu, T. Ma, D. M. Sun, Z. Ni, X. L. Ma, H. M. Cheng and W. Ren, *Adv. Mater.*, 2017, **29**, 1700990.
- 21Q. Feng, M. Zhu, Y. Zhao, H. Liu, M. Li, J. Zheng, H. Xu and Y. Jiang, Nanotechnology, 2018, **30**, 034001.
- 22H. Kim, G. H. Ahn, J. Cho, M. Amani, J. P. Mastandrea, C. K. Groschner, D. H. Lien, Y. Zhao, J. W. Ager III, M. C. Scott, D. C. Chrzan, A. Javey, *Sci. Adv.*, 2019, 5, 2375.
- 23X. Zhang, F. Zhang, Y. Wang, D. S. Schulman, T. Zhang, A. Bansal, N. Alem, S. Das, V. H. Crespi, M. Terrones and J. M. Redwing, ACS Nano 2019, 13, 3341.
- 24J. C. Shaw, H. Zhou, Y. Chen, N. O. Weiss, Y. Liu, Y. Huang and X. Duan, *Nano Res.*, 2014, 7, 511.
- 25J. Xia, X. Huang, L. Z. Liu, M. Wang, L. Wang, B. Huang, D. D. Zhu, J. J. Li, C. Z. Gu and X. M. Meng, *Nanoscale*, 2014, 6, 8949.
- 26X. Wang, Y. Gong, G. Shi, W. L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, E. Ringe, B. K. Tay and P. M. Ajayan, *ACS Nano*, 2014, **8**, 5125.
- 27B. Li, Y. Gong, Z. Hu, G. Brunetto, Y. Yang, G. Ye, Z. Zhang, S. Lei, Z. Jin, E. Bianco, X. Zhang, W. Wang, J. Lou, D. S. Galvão, M. Tang, B. I. Yakobson, R. Vajtai and P. M. Ajayan, *Angew. Chem. Int. Ed.*, 2016, 55, 10656.
- 28J. Chen, X. Zhao, S. J. R. Tan, H. Xu, B. Wu, B. Liu, D. Fu, W. Fu, D. Geng, Y. Liu, W. Liu, W. Tang, L. Li, W. Zhou, T. C. Sum and K. P. Loh, *J. Am. Chem. Soc.*, 2017, **139**, 1073.

- 29I. Bilgin, A. S. Raeliarijaona, M. C. Lucking, S. C. Hodge, A. D. Mohite, A. de Luna Bugallo, H. Terrones and S. Kar, ACS Nano, 2018, 12, 740.
- 30T. Chen, G. Hao, G. Wang, B. Li, L. Kou, H. Yang, X. Zheng and J. Zhong, 2D Mater., 2019, 6, 025002.
- 31 R. Shi, P. He, X. Cai, Z. Zhang, Wang, W. J. Wang, X. Feng, Z. Wu, A. Amini, N. Wang and C. Cheng, ACS Nano, 2020, 14, 7593.
- 32S. Jiang, M. Hong, W. Wei, L. Zhao, N. Zhang, Z. Zhang, P. Yang, N. Gao, X. Zhou, C. Xie, J. Shi, Y. Huan, L. Tong, J. Zhao, Q. Zhang, Q. Fu and Y. Zhang, *Commun. Chem.*, 2018, 1, 17.
- 33 M. Hong, X. Zhou, N. Gao, S. Jiang, C. Xie, L. Zhao, Y. Gao, Z. Zhang, P. Yang,Y. Shi, Q. Zhang, Z. Liu, J. Zhao and Y. Zhang, *ACS Nano*, 2018, 12, 10095.
- 34S. Jiang, L. Zhao, Y. Shi, C. Y. Xie, N. Zhang, Z. Zhang, Y. Huan, P. Yang, M. Hong, X. Zhou, J. Shi, Q. Zhang and Y. Zhang, *Nanotechnology*, 2018, 29, 204003.
- 35X. Li, X. Dai, D. Tang, X. Wang, J. Hong, C. Chen, Y. Yang, J. Lu, J. Zhu, Z. Lei,
 K. Suenaga, F. Ding and H. Xu, *Adv. Funct. Mater.*, 2021, **31**, 2102138.
- 36Y. Yang, K. Zhang, L. Zhang, G. Hong, C. Chen, H. Jing, J. Lu, P. Wang, X. Chen, L. Wang and H. Xu, *InfoMat*, 2021, **3**, 705.
- 37J. Shi, Y. Huan, M. Hong, R. Xu, P. Yang, Z. Zhang, X. Zou and Y. Zhang, ACS Nano, 2019, 13, 8442.
- 38J. Shi, X. Chen, L. Zhao, Y. Gong, M. Hong, Y. Huan, Z. Zhang, P. Yang, Y. Li, Q. Zhang, Q. Zhang, L. Gu, H. Chen, J. Wang, S. Deng, N. Xu and Y. F. Zhang, *Adv. Mater.*, 2018, **30**, 1804616.
- 39J. Shi, X. Wang, S. Zhang, L. Xiao, Y. Huan, Gong, Y. Z. Zhang, Y. Li, X. Zhou, M. Hong, Q. Fang, Q. Zhang, X. Liu, L. Gu, Z. Liu and Y. Zhang, *Nat. Commun.*, 2017, 8, 958.
- 40P. Yang, S. Zhang, S. Pan, B. Tang, Y. Liang, X. Zhao, Z. Zhang, J. Shi, Y. Huan, Y. Shi, S. J. Pennycook, Z. Ren, G. Zhang, Q. Chen, X. Zou, Z. Liu and Y. Zhang, *ACS Nano*, 2020, 14, 5036.
- 41 T. B. Massalski, H. Okamoto and L. Brewer, Bull. Alloy Phase Diagrams, 1986, 7, 449.